CLElementwiseFunction.java
package neureka.backend.main.implementations.elementwise;
import neureka.Neureka;
import neureka.Tensor;
import neureka.backend.api.ExecutionCall;
import neureka.backend.main.implementations.ParsedCLImplementation;
import neureka.backend.main.implementations.fun.api.ScalarFun;
import neureka.math.args.Arg;
import neureka.devices.opencl.KernelCode;
import neureka.devices.opencl.OpenCLDevice;
public class CLElementwiseFunction extends ParsedCLImplementation
{
public CLElementwiseFunction( ScalarFun fun )
{
super(
CLElementwiseFunction::_run,
2,
Neureka.get().utility().readResource("kernels/activation_template.cl"),
fun.activationCode(),
fun.derivationCode(),
fun.id(),
kernelCode -> new KernelCode[]{kernelCode}
);
}
private static Tensor<?> _run(ExecutionCall<OpenCLDevice> call )
{
int offset = call.input( Number.class, 0 ) != null ? 0 : 1;
int gwz = call.input( Number.class, 0 ) != null ? call.input( Number.class, 0 ).size() : call.input( Number.class, 1 ).size();
// Drain tensor needs to be 'actual'! :
if ( !call.input( Number.class, offset + 1).isVirtual() ) call.input( Number.class, offset).mut().setIsVirtual( false );
call.getDevice()
.getKernel(call)
.passAllOf( call.input( Number.class, offset ) )
.passAllOf( call.input( Number.class, offset + 1 ) )
.pass( call.input( Number.class, 0 ).rank() )
.pass( call.getValOf( Arg.DerivIdx.class ) )
.call( gwz );
return call.input( 0 );
}
}