CLScalarFunction.java
package neureka.backend.main.implementations.scalar;
import neureka.Tensor;
import neureka.backend.api.ExecutionCall;
import neureka.backend.api.ImplementationFor;
import neureka.backend.main.implementations.fun.api.CPUFun;
import neureka.backend.main.implementations.fun.api.ScalarFun;
import neureka.math.args.Arg;
import neureka.devices.opencl.OpenCLDevice;
public class CLScalarFunction implements ImplementationFor<OpenCLDevice>
{
private final ScalarFun _fun;
public CLScalarFunction(ScalarFun fun) {
_fun = fun;
}
@Override
public Tensor<?> run(ExecutionCall<OpenCLDevice> call) {
int d = call.getValOf(Arg.DerivIdx.class);
CPUFun f = d < 0 ? _fun.getActivation() : _fun.getDerivative();
Number value = f.invoke(call.input( Number.class, 1 ).item(0).doubleValue());
Tensor<Number> out = call.input( Number.class, 0 );
out.mut().setDataAt(0, value);
return call.input(0);
}
}