Product.java
package neureka.backend.main.operations.indexer;
import neureka.Neureka;
import neureka.Tensor;
import neureka.backend.api.*;
import neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm;
import neureka.backend.api.template.operations.AbstractOperation;
import neureka.backend.api.template.operations.OperationBuilder;
import neureka.backend.main.operations.operator.Multiplication;
import neureka.math.Function;
import neureka.math.args.Arg;
import neureka.math.parsing.FunctionParser;
import neureka.ndim.NDimensional;
import java.util.Arrays;
import java.util.stream.IntStream;
/**
* This type of operation belongs to the same species as the
* {@link Summation} operation.
* It executes incoming calls so that the calling function
* will be executed with all input indices passed to it.
* The resulting array of tensors will then multiplied with each other
* to produce the result of this operation, hence the name {@link Product}.
*/
public final class Product extends AbstractOperation
{
public Product()
{
super (
new OperationBuilder()
.identifier( "prodJs" )
.operator( "prodJs" )
.arity( 1 )
.isOperator( false )
.isIndexer( true )
.isDifferentiable( true )
.isInline( false )
);
/*
The product operation does not have algorithms because it is
a special derivative case of the "multiplication" operation.
*/
}
@Override
public Result execute( final Function caller, final ExecutionCall<?> call )
{
if ( call.getDerivativeIndex() >= 0 )
{
if ( !call.validate().allNotNullHaveSame(NDimensional::shape).isValid() )
throw new IllegalArgumentException("The shapes of the operands of the multiplication operation must be equal! (when deriving nested functions)");
Function noAD = Function.of( caller.toString(), false );
Tensor<?>[] results = new Tensor[ call.arity() ];
for ( int i = 0; i < results.length; i++ ) {
ExecutionCall<?> flatCall = AbstractDeviceAlgorithm.flattenForIndexer( noAD, call.withArgs(Arg.VarIdx.of(i), Arg.DerivIdx.of(-1)) );
results[ i ] = flatCall.input( 0 );
}
int d = call.getDerivativeIndex();
int[] toBeDerived = IntStream.range(0,call.arity())
.filter( i -> caller.dependsOn(d) )
.toArray();
Tensor<?>[] derivs = new Tensor[ call.arity() ];
for ( int i = 0; i < results.length; i++ ) {
int finalI = i;
if ( Arrays.stream(toBeDerived).anyMatch(v -> v == finalI) ) {
ExecutionCall<?> flatCall = AbstractDeviceAlgorithm.flattenForIndexer(noAD, call.withArgs(Arg.VarIdx.of(i), Arg.DerivIdx.of(d)));
derivs[i] = flatCall.input(0);
}
}
return Multiplication.derive( toBeDerived, results, i -> derivs[i] );
}
Tensor<?>[] inputs = new Tensor[ call.arity() ];
for ( int i = 0; i < inputs.length; i++ ) {
ExecutionCall<?> flatCall = AbstractDeviceAlgorithm.flattenForIndexer( caller, call.withArgs(Arg.VarIdx.of(i)) );
inputs[ i ] = flatCall.input( 0 );
}
Operation mullOp = Neureka.get().backend().getOperation("*");
Function mul = new FunctionParser(Neureka.get().backend())
.parse( mullOp, inputs.length, caller.isDoingAD() );
return mullOp.execute( mul, call.withInputs(inputs).withOperation(mullOp).withArgs(Arg.DerivIdx.of(-1)) );
}
@Override
public double calculate( double[] inputs, int j, int d, Function[] src )
{
if ( j < 0 ) return calculate( inputs, d, src );
if ( d < 0 ) {
double prod = 1;
boolean nothingDone = true;
for ( int Ii = 0; Ii < inputs.length; Ii++ ) {
prod *= src[ 0 ].call( inputs, Ii );
nothingDone = false;
}
if ( nothingDone ) return src[ 0 ].call( inputs, j );
return prod;
} else {
double u, ud, v, vd;
u = src[ 0 ].call( inputs, 0 );
ud = src[ 0 ].derive(inputs, d, 0);
for ( int ji = 1; ji < inputs.length; ji++ ) {
v = src[ 0 ].call( inputs, ji );
vd = src[ 0 ].derive( inputs, d, ji );
ud = u * vd + v * ud;
u *= v;
}
return ud;
}
}
public static double calculate( double[] inputs, int d, Function[] src ) {
if ( d < 0 ) {
double prod = 1;
boolean nothingDone = true;
for ( int i = 0; i < inputs.length; i++ ) {
prod *= src[ 0 ].call( inputs, i );
nothingDone = false;
}
if ( nothingDone ) return src[ 0 ].call( inputs );
return prod;
} else {
double u, ud, v, vd;
u = src[ 0 ].call(inputs, 0);
ud = src[ 0 ].derive(inputs, d, 0);
for ( int j = 1; j < inputs.length; j++ ) {
v = src[ 0 ].call( inputs, j );
vd = src[ 0 ].derive( inputs, d, j );
ud = u * vd + v * ud;
u *= v;
}
return ud;
}
}
}