Momentum.java
package neureka.optimization.implementations;
import neureka.Shape;
import neureka.Tensor;
import neureka.common.utility.LogUtil;
import neureka.optimization.Optimizer;
public class Momentum<V extends Number> implements Optimizer<V>
{
private final double lr; // learning rate
private final double decay; // decay rate
private final Tensor<Number> v; // velocity:
Momentum(Tensor<V> target, double learningRate, double decay ) {
LogUtil.nullArgCheck( target, "target", Tensor.class );
Shape shape = target.shape();
v = Tensor.of(target.getItemType(), shape, 0).getMut().upcast(Number.class);
lr = learningRate; // Step size/learning rate is 0.01 by default!
this.decay = decay; // Decay rate is 0.9 by default!
}
@Override
public Tensor<V> optimize(Tensor<V> w ) {
LogUtil.nullArgCheck( w, "w", Tensor.class ); // The input must not be null!
Tensor<Number> g = w.gradient().get().mut().upcast(Number.class);
v.getMut().timesAssign(decay);
v.getMut().plusAssign(g.times(1 - decay));
return Tensor.of("-" + lr + " * I[0]", (Tensor<V>) v);
}
}