RMSProp.java
package neureka.optimization.implementations;
import neureka.Tensor;
import neureka.common.utility.LogUtil;
import neureka.optimization.Optimizer;
/**
* Root Mean Squared Propagation, or RMSProp,
* is an extension of gradient descent and the AdaGrad version of gradient
* descent that uses a decaying average of partial gradients in the adaptation of the
* step size for each parameter.
* It is similar to {@link AdaGrad} in that it uses a moving average of
* the squared gradients to scale the learning rate.
*
* @param <V> The super type of the value item type for the tensors whose gradients can be optimized by this.
*/
public class RMSProp<V extends Number> implements Optimizer<V>
{
private final double lr; // learning rate
private final double decay; // decay rate
private final Tensor<Number> h; // sum of squared gradients:
RMSProp(Tensor<Number> target, double learningRate, double decay ) {
LogUtil.nullArgCheck( target, "target", Tensor.class );
h = Tensor.of(target.getItemType(), target.shape(), 0);
lr = learningRate; // Step size/learning rate is 0.001 by default!
this.decay = decay; // Decay rate is 0.9 by default!
}
@Override
public Tensor<V> optimize(Tensor<V> w ) {
LogUtil.nullArgCheck( w, "w", Tensor.class ); // The input must not be null!
Tensor<Number> g = w.gradient().get().mut().upcast(Number.class);
h.getMut().timesAssign(decay);
h.getMut().plusAssign(g.power(2).times(1 - decay));
return Tensor.of("-" + lr + " * ", g, " / ( ( ", h, " ** 0.5 ) + 1e-8 )");
}
}