Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X _ 

A

abs() - Method in class neureka.math.Functions
 
abs() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
ABSOLUTE - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Absolute - Class in neureka.backend.main.operations.functions
 
Absolute() - Constructor for class neureka.backend.main.operations.functions.Absolute
 
AbstractBaseDevice<V> - Class in neureka.devices
 
AbstractBaseDevice() - Constructor for class neureka.devices.AbstractBaseDevice
 
AbstractComponentOwner<C> - Class in neureka.common.composition
Together with the Component interface, this class defines a simple component system in which implementations of the Component interface are managed by extensions of this AbstractComponentOwner.
AbstractComponentOwner() - Constructor for class neureka.common.composition.AbstractComponentOwner
 
AbstractCPUConvolution - Class in neureka.backend.main.implementations.convolution
 
AbstractCPUConvolution() - Constructor for class neureka.backend.main.implementations.convolution.AbstractCPUConvolution
 
AbstractDevice<V> - Class in neureka.devices
This is the abstract precursor class providing some useful implementations for core concepts which are most likely applicable to most concrete implementations of the Device interface.
AbstractDevice() - Constructor for class neureka.devices.AbstractDevice
 
AbstractDeviceAlgorithm<C extends DeviceAlgorithm<C>> - Class in neureka.backend.api.template.algorithms
This is a partial implementation of the Algorithm interface which implements the component system for implementation instances of the ImplementationFor interface.
AbstractDeviceAlgorithm(String) - Constructor for class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
AbstractDeviceData<T> - Class in neureka.devices
 
AbstractDeviceData(AbstractBaseDevice<?>, Object, DataType<T>, Runnable) - Constructor for class neureka.devices.AbstractDeviceData
 
AbstractFunAlgorithm - Class in neureka.backend.api.template.algorithms
 
AbstractFunAlgorithm(String) - Constructor for class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
 
AbstractFunDeviceAlgorithm<C extends DeviceAlgorithm<C>> - Class in neureka.backend.api.template.algorithms
This is the base class for implementations of the Algorithm interface.
AbstractFunDeviceAlgorithm(String) - Constructor for class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
 
AbstractImplementationFor<D extends Device<?>> - Class in neureka.backend.api.template.implementations
 
AbstractImplementationFor(ImplementationFor<D>, int) - Constructor for class neureka.backend.api.template.implementations.AbstractImplementationFor
 
AbstractNDC - Class in neureka.ndim.config
The following is an abstract implementation of the NDConfiguration which offers a basis for instantiation and caching of concrete implementations extending this abstract class.
AbstractNDC() - Constructor for class neureka.ndim.config.AbstractNDC
 
AbstractOperation - Class in neureka.backend.api.template.operations
This abstract Operation implementation is a useful template for creating new operations.
AbstractOperation(OperationBuilder) - Constructor for class neureka.backend.api.template.operations.AbstractOperation
 
accept(Class<? extends Operation>, Class<? extends DeviceAlgorithm>, Class<? extends D>, Function<LoadingContext, ImplementationFor<D>>) - Method in interface neureka.backend.api.ini.ImplementationReceiver
 
access(Tensor<T>) - Method in class neureka.devices.AbstractDevice
This method exposes the tensor access API for reading from or writing to a tensor stored on this device.
access(Tensor<T>) - Method in interface neureka.devices.Device
This method exposes the tensor access API for reading from or writing to a tensor stored on this device.
access(Tensor<T>) - Method in class neureka.devices.file.FileDevice
 
act(ADTarget<?>) - Method in interface neureka.autograd.ADAction
The auto-differentiation forward or backward pass of an ADAction propagate partial differentiations forward along the computation graph.
activationCode() - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarAbsolute
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarCbrt
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarCosinus
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarExp
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGaSU
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGaTU
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGaussian
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGaussianFast
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGeLU
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarIdentity
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarLog10
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarLogarithm
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarQuadratic
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarReLU
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSeLU
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSigmoid
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSiLU
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSinus
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSoftplus
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSoftsign
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSqrt
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarTanh
 
activationCode() - Method in class neureka.backend.main.implementations.fun.ScalarTanhFast
 
actualize() - Method in interface neureka.devices.Device.Access
 
ADAction - Interface in neureka.autograd
This interface is the declaration for lambda actions for both the ADAction.act(ADTarget) method of the ADAction interface.
ADAction(Function, ExecutionCall<? extends Device<?>>) - Static method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
 
ADActionSupplier - Interface in neureka.backend.api.fun
Implementations of this functional interface ought to return a new instance of the ADAction class responsible for performing automatic differentiation both for forward and backward mode differentiation.
AdaGrad<V extends java.lang.Number> - Class in neureka.optimization.implementations
Adaptive Gradients, or AdaGrad for short, is an extension of the gradient descent optimization algorithm that adjusts the step size for each parameter based on the squared gradients seen over the course of previous optimization steps.
AdaGrad - Static variable in interface neureka.optimization.Optimizer
 
AdaGradFactory - Class in neureka.optimization.implementations
 
AdaGradFactory() - Constructor for class neureka.optimization.implementations.AdaGradFactory
 
ADAM<V extends java.lang.Number> - Class in neureka.optimization.implementations
ADAM (short for Adaptive Moment Estimation) is an adaptive learning rate optimization algorithm that utilises both momentum and scaling, combining the benefits of RMSProp and SGD with respect to Momentum.
ADAM - Static variable in interface neureka.optimization.Optimizer
 
ADAMFactory - Class in neureka.optimization.implementations
 
ADAMFactory() - Constructor for class neureka.optimization.implementations.ADAMFactory
 
add() - Method in class neureka.math.Functions
 
addAssign() - Method in class neureka.math.Functions
 
addChild(Tensor<V>) - Method in class neureka.framing.Relation
 
Addition - Class in neureka.backend.main.operations.operator
 
Addition() - Constructor for class neureka.backend.main.operations.operator.Addition
 
addOperation(Operation) - Method in class neureka.backend.api.BackendContext
This method registers Operation implementation instances in this BackendContext which is the thread local execution context receiving and processing Tensor instances...
addPending(Set<GraphNode<V>>) - Method in class neureka.autograd.JITProp
 
addPermuteRelationFor(Tensor<V>, int[]) - Method in class neureka.framing.Relation
When creating permuted versions of slices then there must be a translation between the shape configuration between this new slice and the original parent tensor from which both slices have been derived.
addToGradient(Tensor<T>) - Method in interface neureka.MutateTensor
This method takes the provided Tensor instance and adds its contents to the contents of the Tensor which is set as gradient of this very Tensor.
ADSupportPredicate - Interface in neureka.backend.api.fun
A ADSupportPredicate lambda checks which auto differentiation mode can be performed for a given ExecutionCall.
ADTarget<V> - Class in neureka.autograd
This is simply a wrapper for useful information needed by implementations of the ADAction and ADAction interfaces to perform error propagation.
Algorithm - Interface in neureka.backend.api
This class is the middle layer of the 3 tier compositional architecture of this backend, which consists of Operations, Algorithms and in case of a DeviceAlgorithm also ImplementationFor.
all(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator
 
all(Call.TensorCompare) - Method in class neureka.backend.api.Call.Validator
 
all(V) - Method in class neureka.fluent.building.NdaBuilder
 
all(V) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAll
This method creates and return a Tensor instance which will be homogeneously filled by the the provided value irrespective of the previously defined shape.
all(V) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAllTensor
This method creates and return a Tensor instance which will be homogeneously filled by the the provided value irrespective of the previously defined shape.
all() - Method in class neureka.fluent.slicing.AxisSliceBuilder
 
all() - Method in interface neureka.fluent.slicing.states.FromOrAt
This is a convenience method replacing "from(0).to(axisSize-1)", meaning that it simply slices the whole current axis from the original tensor.
all() - Method in interface neureka.fluent.slicing.states.FromOrAtTensor
This is a convenience method replacing "from(0).to(axisSize-1)", meaning that it simply slices the whole current axis from the original tensor.
allAliasGetter(Supplier<List<Object>>) - Method in class neureka.framing.fluent.AxisFrame.Builder
 
allAliasGetterFor(Function<Integer, List<Object>>) - Method in class neureka.framing.fluent.AxisFrame.Builder
 
allMetaArgs() - Method in class neureka.backend.api.Call
 
allNotNull(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator
 
allNotNullHaveSame(Call.TensorProperty) - Method in class neureka.backend.api.Call.Validator
 
allocate(DataType<T>, NDConfiguration) - Method in interface neureka.devices.Device
 
allocate(DataType<T>, int) - Method in interface neureka.devices.Device
 
allocate(DataType<V>, NDConfiguration) - Method in class neureka.devices.file.FileDevice
 
allocate(Class<T>, Object) - Method in class neureka.devices.host.CPU
 
allocate(Class<T>, int, Object) - Method in class neureka.devices.host.CPU
 
allocate(DataType<T>, NDConfiguration) - Method in class neureka.devices.host.CPU
 
allocate(DataType<T>, NDConfiguration) - Method in class neureka.devices.opencl.OpenCLDevice
 
allocateFromAll(DataType<T>, NDConfiguration, Object) - Method in interface neureka.devices.Device
 
allocateFromAll(DataType<T>, NDConfiguration, Object) - Method in class neureka.devices.file.FileDevice
 
allocateFromAll(DataType<T>, NDConfiguration, Object) - Method in class neureka.devices.host.CPU
 
allocateFromAll(DataType<T>, NDConfiguration, Object) - Method in class neureka.devices.opencl.OpenCLDevice
 
allocateFromOne(DataType<T>, NDConfiguration, T) - Method in interface neureka.devices.Device
 
allocateFromOne(DataType<V>, NDConfiguration, V) - Method in class neureka.devices.file.FileDevice
 
allocateFromOne(DataType<T>, NDConfiguration, T) - Method in class neureka.devices.host.CPU
 
allocateFromOne(DataType<T>, NDConfiguration, T) - Method in class neureka.devices.opencl.OpenCLDevice
 
allowsBackward() - Method in enum neureka.backend.api.AutoDiffMode
 
allowsForward() - Method in enum neureka.backend.api.AutoDiffMode
 
allShare(Function<Tensor<?>, T>) - Method in class neureka.backend.api.Call.Validator
 
and(F) - Method in interface neureka.backend.main.algorithms.internal.AndBackward
 
andArgs(List<Arg>) - Method in class neureka.backend.api.Call.Builder
 
andArgs(Arg<?>...) - Method in class neureka.backend.api.Call.Builder
 
andArgs(List<Arg>) - Method in class neureka.backend.api.ExecutionCall.Builder
 
andArgs(Arg<?>...) - Method in class neureka.backend.api.ExecutionCall.Builder
 
AndBackward<F> - Interface in neureka.backend.main.algorithms.internal
 
andFill(V...) - Method in class neureka.fluent.building.NdaBuilder
 
andFill(V...) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAll
Provide an array of values which will be used to fill the Tensor instance returned by this last fluent builder method.
andFill(List<V>) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAll
Provide a list of values which will be used to fill the Tensor instance returned by this last fluent builder method.
andFill(V...) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAllTensor
Provide an array of values which will be used to fill the Tensor instance returned by this last fluent builder method.
andFill(List<V>) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAllTensor
Provide a list of values which will be used to fill the Tensor instance returned by this last fluent builder method.
andFillFrom(V) - Method in class neureka.fluent.building.NdaBuilder
 
andFillFrom(V) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAll
This part of the builder API allows for specifying a range which starts from the provided value and will end at the value specified in the next builder step returned by this method.
andFillFrom(V) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAllTensor
This part of the builder API allows for specifying a range which starts from the provided value and will end at the value specified in the next builder step returned by this method.
andImplementation(ImplementationFor<CPU>) - Method in interface neureka.backend.main.implementations.CPUImplementation.AndImplementation
 
andSeed(Object) - Method in class neureka.fluent.building.NdaBuilder
 
andSeed(Object) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAll
This method creates and return a Tensor instance which will be filled based on the provided seed object.
andSeed(Object) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAllTensor
This method creates and return a Tensor instance which will be filled based on the provided seed object.
andWhere(Filler<V>) - Method in class neureka.fluent.building.NdaBuilder
This method receives an Filler lambda which will be used to populate the Tensor instance produced by this API with values.
andWhere(Filler<V>) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAll
Pass a lambda to this method which will be used to populate the Tensor built by this fluent builder API based on the indices of the tensor.
andWhere(Filler<V>) - Method in interface neureka.fluent.building.states.IterByOrIterFromOrAllTensor
Pass a lambda to this method which will be used to populate the Tensor built by this fluent builder API based on the indices of the tensor.
any(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator
 
any(String...) - Static method in interface neureka.devices.Device
This method returns Device instances matching the given search parameter.
any(Predicate<V>) - Method in interface neureka.Nda
Iterates over every element of this nd-array, and checks whether any element matches the provided lambda.
any(Predicate<Integer>) - Method in interface neureka.Shape
 
anyNotNull(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator
 
applyGradient() - Method in interface neureka.Tensor
If this tensor owns a gradient tensor as component, then it can be applied by this method.
approve(ExecutionCall<? extends Device<?>>) - Method in class neureka.devices.AbstractDevice
This method plays an important role in approving a provided ExecutionCall. When implementing custom operations or such for the backend of this library, then one may use this in order to check if the provided call is suitable for this Device.
approve(ExecutionCall<? extends Device<?>>) - Method in interface neureka.devices.Device
This method is used internally to give Device implementations the opportunity to perform some exception handling before the ExecutionCall will be dispatched.
approve(ExecutionCall<? extends Device<?>>) - Method in class neureka.devices.file.FileDevice
 
architecture - Variable in class neureka.devices.host.machine.CommonMachine
 
Arg<T> - Class in neureka.math.args
Extend this class to define additional meta arguments for Functions.
Arg(T) - Constructor for class neureka.math.args.Arg
 
Arg.Axis - Class in neureka.math.args
 
Arg.Derivative<V> - Class in neureka.math.args
 
Arg.DerivIdx - Class in neureka.math.args
This is an import argument whose role might not be clear at first : An operation can have multiple inputs, however when calculating the derivative for a forward or backward pass then one must know which derivative ought to be calculated.
Arg.Ends - Class in neureka.math.args
 
Arg.Indices - Class in neureka.math.args
 
Arg.Layout - Class in neureka.math.args
 
Arg.MinRank - Class in neureka.math.args
 
Arg.Offset - Class in neureka.math.args
 
Arg.Seed - Class in neureka.math.args
 
Arg.Shape - Class in neureka.math.args
 
Arg.Stride - Class in neureka.math.args
 
Arg.TargetDevice - Class in neureka.math.args
 
Arg.VarIdx - Class in neureka.math.args
The following argument is relevant for a particular type of operation, namely: an "indexer".
Args - Class in neureka.math.args
 
Args() - Constructor for class neureka.math.args.Args
 
arity() - Method in class neureka.backend.api.Call
 
arity(int) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
as(Class<D>) - Method in interface neureka.Data
This returns the underlying raw data object of a nd-array or tensor.
asDerivative(Function[], int) - Method in interface neureka.backend.api.Operation
Operation implementations and Function implementations are in a tight relationship where the Function describes an abstract syntax tree based on the syntactic information provided by the Operation (through methods like Operation.getOperator() or Operation.getIdentifier()).
asDerivative(Function[], int) - Method in class neureka.backend.api.template.operations.AbstractOperation
Operation implementations and Function implementations are in a tight relationship where the Function describes an abstract syntax tree based on the syntactic information provided by the Operation (through methods like Operation.getOperator() or Operation.getIdentifier()).
asDerivative(Function[], int) - Method in interface neureka.backend.api.template.operations.OperationBuilder.Derivation
 
asDerivative(Function[], int) - Method in class neureka.backend.main.operations.functions.Logarithm
 
asDerivative(Function[], int) - Method in class neureka.backend.main.operations.operator.Addition
 
asDerivative(Function[], int) - Method in class neureka.backend.main.operations.operator.Division
 
asDerivative(Function[], int) - Method in class neureka.backend.main.operations.operator.Modulo
 
asDerivative(Function[], int) - Method in class neureka.backend.main.operations.operator.Multiplication
 
asDerivative(Function[], int) - Method in class neureka.backend.main.operations.operator.Power
 
asDerivative(Function[], int) - Method in class neureka.backend.main.operations.operator.Subtraction
 
asImage(Tensor.ImageType) - Method in interface neureka.Tensor
Turns this tensor into a BufferedImage based on the provided Tensor.ImageType formatting choice.
asInlineArray() - Method in interface neureka.ndim.config.NDConfiguration
This method returns an array of flattened arrays which define this nd-configuration in a compact manner.
assign(T) - Method in interface neureka.MutateNda
Use this to assign the provided item to all elements of this nd-array! This method is an inline operation which changes the underlying data of the nd-array.
assign(Nda<T>) - Method in interface neureka.MutateNda
Use this to assign the provided nd-array to this nd-array! This method is an inline operation which changes the underlying data of the nd-array.
assign(T) - Method in interface neureka.MutateTensor
 
assign(Nda<T>) - Method in interface neureka.MutateTensor
 
AssignLeft - Class in neureka.backend.main.operations.other
 
AssignLeft() - Constructor for class neureka.backend.main.operations.other.AssignLeft
 
assumptionBasedOn(String) - Static method in class neureka.math.parsing.ParseUtil
This method tries to find the next best operation String the user might have meant.
asType(Class<T>) - Method in interface neureka.Tensor
 
at(int) - Method in interface neureka.devices.Device.Writer
Writes whatever kind of data was previously specified, to the tensors' data at the position targeted by the provided index.
at(String) - Static method in class neureka.devices.file.FileDevice
 
at(int) - Method in class neureka.fluent.slicing.AxisSliceBuilder
This method returns an instance of this very AxisSliceBuilder instance disguised by the AxisOrGet interface.
at(int) - Method in interface neureka.fluent.slicing.states.FromOrAt
This is a convenience method replacing "from(i).to(i)", meaning that it simply slices a single axis from the original tensor at the specified index.
at(int) - Method in interface neureka.fluent.slicing.states.FromOrAtTensor
This is a convenience method replacing "from(i).to(i)", meaning that it simply slices a single axis from the original tensor at the specified index.
At<K,R> - Interface in neureka.framing.fluent
 
at(K) - Method in interface neureka.framing.fluent.At
 
at(int...) - Method in interface neureka.MutateNda
Exposes the MutateNda.Item interface which allows you to get or set individual nd-array items.
at(int...) - Method in interface neureka.Nda
This method exposes the Nda.Item API which allows you to get or set individual items within this nd-array targeted by an array of provided indices.
atAxis(Object) - Method in class neureka.framing.NDFrame
A NDFrame exposes aliases for axes as well as aliases for individual positions within an axis.
atIndexAlias(Object) - Method in class neureka.framing.fluent.AxisFrame
 
autoDelete(Tensor<?>...) - Static method in class neureka.backend.main.memory.MemUtil
This method will try to delete the provided array of tensors if the tensors are not important computation graph components (like derivatives for example).
AutoDiffMode - Enum in neureka.backend.api
 
autoDiffModeFrom(ExecutionCall<? extends Device<?>>) - Method in interface neureka.backend.api.fun.ADSupportPredicate
Implementations of this ought to check which auto differentiation mode can be performed for a given ExecutionCall.
autoDiffModeFrom(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
 
autoDiffModeFrom(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
 
autoDiffModeFrom(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
 
autograd() - Method in class neureka.Neureka.Settings
 
autograd(Object) - Method in class neureka.Neureka.Settings
This allows you to configure Neureka using a Groovy DSL.
AutoGrad() - Constructor for class neureka.Neureka.Settings.AutoGrad
 
autogradMode() - Method in class neureka.backend.api.ExecutionCall
This method queries the underlying Operation for a suitable Algorithm for this ExecutionCall to see what kind of auto differentiation can be performed.
axis(int) - Method in class neureka.fluent.slicing.AxisSliceBuilder
This method returns an instance of the AxisSliceBuilder targeted by the provided index.
axis(int) - Method in class neureka.fluent.slicing.SliceBuilder
This method returns an instance of the AxisSliceBuilder disguised by the FromOrAt interface.
axis(int) - Method in interface neureka.fluent.slicing.states.AxisOrGet
Slicing a tensor ultimately means slicing one or more of its axes! This method allows one to specify which axis should be sliced next.
axis(int) - Method in interface neureka.fluent.slicing.states.AxisOrGetTensor
Slicing a tensor ultimately means slicing one or more of its axes! This method allows one to specify which axis should be sliced next.
AxisFrame<G,V> - Class in neureka.framing.fluent
This class represents the labeled axis of an NDFrame.
AxisFrame.Builder<SetType,GetType,ValueType> - Class in neureka.framing.fluent
 
AxisFrame.Set<V> - Interface in neureka.framing.fluent
 
AxisOrGet<V> - Interface in neureka.fluent.slicing.states
This is the starting point of the call transition graph exposed by the slice builder API.
AxisOrGetTensor<V> - Interface in neureka.fluent.slicing.states
 
AxisSliceBuilder<V> - Class in neureka.fluent.slicing
 
AXPY - Class in neureka.backend.main.operations.linear.internal.blas
The ?axpy routines perform a vector-vector operation defined as y := a*x + y where: a is a scalar x and y are vectors each with a number of elements that equals n.
AXPY() - Constructor for class neureka.backend.main.operations.linear.internal.blas.AXPY
 

B

backend() - Method in class neureka.Neureka
 
BackendContext - Class in neureka.backend.api
Instances of this class are execution contexts hosting Operation instances which receive Tensor instances for execution.
BackendContext() - Constructor for class neureka.backend.api.BackendContext
This creates a new context which is completely void of any Operation implementation instances.
BackendContext.Runner - Class in neureka.backend.api
This is a very simple class with a single purpose, namely it exposes methods which receive lambda instances in order to then execute them in a given BackendContext, just to then switch back to the original context again.
BackendExtension - Interface in neureka.backend.api
Implementations of this might introduce CUDA or ROCM to Neureka.
BackendExtension.DeviceOption - Class in neureka.backend.api
This class describes an available Device implementation found for a given BackendExtension.
BackendLoader - Interface in neureka.backend.api.ini
 
BackendRegistry - Class in neureka.backend.api.ini
 
backward(Tensor<V>) - Method in class neureka.autograd.GraphNode
This method is the entry-point for the back-propagation process.
backward(Tensor<V>) - Method in interface neureka.Tensor
Tensors which are used or produced by the autograd system will have a GraphNode component attached to them.
backward(double) - Method in interface neureka.Tensor
Tensors which are used or produced by the autograd system will have a GraphNode component attached to them.
backward() - Method in interface neureka.Tensor
Use this to back-propagate an error signal of 1.0 through the recorded computation graph.
backwardJIT(Tensor<V>) - Method in class neureka.autograd.GraphNode
This method is called only when JITProp is active.
BAD - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
badIfAll(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
 
badIfAll(Call.TensorCompare) - Method in class neureka.backend.api.Call.Validator.Estimator
 
badIfAny(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
 
badIfAnyNonNull(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
 
BasicMachine - Class in neureka.devices.host.machine
How much memory, and how many threads share that memory.
BasicMachine(long, int) - Constructor for class neureka.devices.host.machine.BasicMachine
 
basicSuitability() - Method in class neureka.backend.api.Call.Validator
The validity as float being >0/true and 0/false.
belongsToGraph() - Method in interface neureka.Tensor
Tensors which are used or produced by the autograd system will have a GraphNode component attached to them.
BiElementwise - Class in neureka.backend.main.algorithms
 
BiElementwise() - Constructor for class neureka.backend.main.algorithms.BiElementwise
 
BiScalarBroadcast - Class in neureka.backend.main.algorithms
 
BiScalarBroadcast() - Constructor for class neureka.backend.main.algorithms.BiScalarBroadcast
 
boolToDouble(boolean[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
boolToFloat(boolean[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
bootstrapTip() - Method in enum neureka.devices.opencl.utility.Messages.Tips
 
borrow(Tensor<V>, Tensor<V>...) - Method in interface neureka.devices.Device
This is a very simple fluent API for temporarily storing a number of tensors on this Device, executing a provided lambda action, and then migrating all the tensors back to their original devices.
Broadcast - Class in neureka.backend.main.algorithms
 
Broadcast() - Constructor for class neureka.backend.main.algorithms.Broadcast
 
bufferType - Variable in enum neureka.Tensor.ImageType
 
build() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
build() - Method in class neureka.framing.fluent.AxisFrame.Builder
 
builder() - Static method in interface neureka.backend.api.Operation
 
builder() - Static method in class neureka.framing.fluent.AxisFrame
 
buildFunAlgorithm() - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
 
buildFunAlgorithm() - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
 
byDefaults() - Method in interface neureka.view.NdaAsString.Builder
 
byteToBigInteger(byte[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
byteToDouble(byte[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
byteToFloat(byte[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
byteToInt(byte[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
byteToLong(byte[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
byteToShort(byte[]) - Static method in class neureka.common.utility.DataConverter.Utility
 

C

Cache<O> - Class in neureka.common.utility
This is a simple, fixed size cache for immutable objects which are shared throughout the library runtime...
Cache(int) - Constructor for class neureka.common.utility.Cache
 
cache - Variable in class neureka.devices.host.machine.CommonMachine
The size of one top level (L3 or L2) cache unit in bytes.
Cache.LazyEntry<K,V> - Class in neureka.common.utility
Lazy cache entries are entries whose values will be calculated only when the entry is being stored in the cache.
calculate(double[], int, int, Function[]) - Method in interface neureka.backend.api.Operation
This method mainly ought to serve as a reference- and fallback- implementation for tensor backends and also as the backend for handling the calculation of scalar inputs passed to a given abstract syntax tree of Function instances...
calculate(double, boolean) - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.indexer.Product
 
calculate(double[], int, Function[]) - Static method in class neureka.backend.main.operations.indexer.Product
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.indexer.Summation
 
calculate(double[], int, Function[]) - Static method in class neureka.backend.main.operations.indexer.Summation
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.linear.Convolution
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.linear.DotProduct
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.linear.MatMul
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.linear.XConvLeft
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.linear.XConvRight
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.operator.Addition
 
calculate(double[], int, Function[]) - Static method in class neureka.backend.main.operations.operator.Addition
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.operator.Division
 
calculate(double[], int, Function[]) - Static method in class neureka.backend.main.operations.operator.Division
 
calculate(double[], int, Function[]) - Static method in class neureka.backend.main.operations.operator.Modulo
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.operator.Modulo
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.operator.Multiplication
 
calculate(double[], int, Function[]) - Static method in class neureka.backend.main.operations.operator.Multiplication
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.operator.Power
 
calculate(double[], int, Function[]) - Static method in class neureka.backend.main.operations.operator.Power
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.operator.Subtraction
 
calculate(double[], int, Function[]) - Static method in class neureka.backend.main.operations.operator.Subtraction
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.AssignLeft
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.Cat
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.DimFit
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.DimTrim
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.Max
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.Min
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.Permute
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.Randomization
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.ReLayout
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.Reshape
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.Slice
 
calculate(double[], int, int, Function[]) - Method in class neureka.backend.main.operations.other.Sum
 
call(Supplier<T>) - Method in class neureka.backend.api.BackendContext.Runner
Use this method to supply a lambda which will be executed in the BackendContext which produced this very BackendContext.Runner instance.
Call<D> - Class in neureka.backend.api
Instances of this class model simple execution calls to the backend.
Call(Tensor<?>[], D, List<Arg>) - Constructor for class neureka.backend.api.Call
 
call(int) - Method in class neureka.devices.opencl.KernelCaller
 
call(long[], long[]) - Method in class neureka.devices.opencl.KernelCaller
Use this to call the kernel with 2 long arrays defining how the kernel should be indexed and parallelized.
call(double) - Method in interface neureka.math.Function
Invokes this Function with the provided scalar as a single input and returns the scalar result.
call(double[], int) - Method in interface neureka.math.Function
Invokes this Function with the provided array of inputs ad an index for input dependent indexing.
call(double...) - Method in interface neureka.math.Function
Invokes this Function with the provided array of inputs.
call(Call.Builder<T, D>) - Method in interface neureka.math.Function
Use this for more control over the execution, which is especially useful when interfacing with more complex types of operations, requiring more context information.
call(Call<D>) - Method in interface neureka.math.Function
Use this for more control over the execution, which is very helpful when interfacing with more complex types of operations, requiring more context information.
call(Args, Tensor<T>...) - Method in interface neureka.math.Function
Use this to call this Function alongside with some additional meta-arguments which will be passed to the underlying Operation(s).
call(Tensor<T>) - Method in interface neureka.math.Function
 
call(List<Tensor<T>>) - Method in interface neureka.math.Function
 
call(Tensor<T>[], int) - Method in interface neureka.math.Function
 
call(Tensor<T>...) - Method in interface neureka.math.Function
 
call(Tensor<T>...) - Method in interface neureka.math.Function.Callable
 
call(double[], int) - Method in class neureka.math.implementations.FunctionConstant
 
call(double[], int) - Method in class neureka.math.implementations.FunctionInput
 
call(double[], int) - Method in class neureka.math.implementations.FunctionNode
 
call(double[], int) - Method in class neureka.math.implementations.FunctionVariable
 
Call.Builder<V,T extends Device<V>> - Class in neureka.backend.api
 
Call.DeviceCondition - Interface in neureka.backend.api
 
Call.Else<T> - Interface in neureka.backend.api
 
Call.OperationCondition - Interface in neureka.backend.api
 
Call.TensorCompare - Interface in neureka.backend.api
 
Call.TensorCondition - Interface in neureka.backend.api
 
Call.TensorProperty - Interface in neureka.backend.api
 
Call.TensorsCondition - Interface in neureka.backend.api
 
Call.Validator - Class in neureka.backend.api
This is a simple nested class offering various lambda based methods for validating the tensor arguments stored inside this ExecutionCall.
Call.Validator.Estimator - Class in neureka.backend.api
 
canAccessOpenCL() - Method in class neureka.Neureka
 
canAccessOpenCLDevice() - Method in class neureka.Neureka
 
canBeDeleted() - Method in class neureka.autograd.GraphNode
 
Cat - Class in neureka.backend.main.operations.other
 
Cat() - Constructor for class neureka.backend.main.operations.other.Cat
 
CBRT - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Cbrt - Class in neureka.backend.main.operations.functions
 
Cbrt() - Constructor for class neureka.backend.main.operations.functions.Cbrt
 
cbrt() - Method in class neureka.math.Functions
 
cbrt() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
change() - Method in class neureka.devices.ReferenceCounter.ChangeEvent
 
ChangeEvent(ReferenceCounter.ChangeType, int, int) - Constructor for class neureka.devices.ReferenceCounter.ChangeEvent
 
check(Device<?>) - Method in interface neureka.backend.api.Call.DeviceCondition
 
check(Operation) - Method in interface neureka.backend.api.Call.OperationCondition
 
check(Tensor<?>, Tensor<?>) - Method in interface neureka.backend.api.Call.TensorCompare
 
check(Tensor<?>) - Method in interface neureka.backend.api.Call.TensorCondition
 
check(Tensor<?>[]) - Method in interface neureka.backend.api.Call.TensorsCondition
 
checkArity() - Method in class neureka.backend.api.ExecutionCall
 
childCount() - Method in class neureka.framing.Relation
 
CLBackend - Class in neureka.backend.ocl
This is an OpenCL context component for any given BackendContext which extends a given backend context instance for additional functionality, which in this case is the OpenCL backend storing platform and device information.
CLBackend() - Constructor for class neureka.backend.ocl.CLBackend
Use this constructor if you want to create a new OpenCL world in which there are unique OpenCLPlatform and OpenCLDevice instances.
CLBiElementwise - Class in neureka.backend.main.implementations.elementwise
 
CLBiElementwise(String, String, String) - Constructor for class neureka.backend.main.implementations.elementwise.CLBiElementwise
 
CLBiElementwiseAddition - Class in neureka.backend.main.implementations.elementwise
 
CLBiElementwiseAddition(String) - Constructor for class neureka.backend.main.implementations.elementwise.CLBiElementwiseAddition
 
CLBiElementwiseDivision - Class in neureka.backend.main.implementations.elementwise
 
CLBiElementwiseDivision(String) - Constructor for class neureka.backend.main.implementations.elementwise.CLBiElementwiseDivision
 
CLBiElementwiseModulo - Class in neureka.backend.main.implementations.elementwise
 
CLBiElementwiseModulo(String) - Constructor for class neureka.backend.main.implementations.elementwise.CLBiElementwiseModulo
 
CLBiElementwiseMultiplication - Class in neureka.backend.main.implementations.elementwise
 
CLBiElementwiseMultiplication(String) - Constructor for class neureka.backend.main.implementations.elementwise.CLBiElementwiseMultiplication
 
CLBiElementwisePower - Class in neureka.backend.main.implementations.elementwise
 
CLBiElementwisePower(String) - Constructor for class neureka.backend.main.implementations.elementwise.CLBiElementwisePower
 
CLBiElementwiseSubtraction - Class in neureka.backend.main.implementations.elementwise
 
CLBiElementwiseSubtraction(String) - Constructor for class neureka.backend.main.implementations.elementwise.CLBiElementwiseSubtraction
 
CLBroadcast - Class in neureka.backend.main.implementations.broadcast
 
CLBroadcast(String, String, String) - Constructor for class neureka.backend.main.implementations.broadcast.CLBroadcast
 
CLBroadcastAddition - Class in neureka.backend.main.implementations.broadcast
 
CLBroadcastAddition(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLBroadcastAddition
 
CLBroadcastDivision - Class in neureka.backend.main.implementations.broadcast
 
CLBroadcastDivision(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLBroadcastDivision
 
CLBroadcastModulo - Class in neureka.backend.main.implementations.broadcast
 
CLBroadcastModulo(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLBroadcastModulo
 
CLBroadcastMultiplication - Class in neureka.backend.main.implementations.broadcast
 
CLBroadcastMultiplication(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLBroadcastMultiplication
 
CLBroadcastPower - Class in neureka.backend.main.implementations.broadcast
 
CLBroadcastPower(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLBroadcastPower
 
CLBroadcastSubtraction - Class in neureka.backend.main.implementations.broadcast
 
CLBroadcastSubtraction(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLBroadcastSubtraction
 
clConfigOf(Tensor<?>) - Method in class neureka.devices.opencl.OpenCLDevice
 
clConfigOf(NDConfiguration) - Method in class neureka.devices.opencl.OpenCLDevice
 
clContextCouldNotFindAnyDevices() - Static method in class neureka.devices.opencl.utility.Messages
 
clContextCreationFailed() - Static method in class neureka.devices.opencl.utility.Messages
 
CLConvolution - Class in neureka.backend.main.implementations.convolution
 
CLConvolution(String) - Constructor for class neureka.backend.main.implementations.convolution.CLConvolution
 
CLDot - Class in neureka.backend.main.implementations.linear
Performs a dot product on two vectors using OpenCL.
CLDot() - Constructor for class neureka.backend.main.implementations.linear.CLDot
 
cleanedHeadAndTail(String) - Static method in class neureka.math.parsing.ParseUtil
 
cleanup(Runnable) - Method in interface neureka.devices.Device.Access
Use this to perform some custom memory cleanup for when the accessed Tensor gets garbage collected.
CLElementwiseFunction - Class in neureka.backend.main.implementations.elementwise
 
CLElementwiseFunction(ScalarFun) - Constructor for class neureka.backend.main.implementations.elementwise.CLElementwiseFunction
 
CLFunctionCompiler - Class in neureka.devices.opencl.utility
Turns a Function into OpenCL kernel code to make optimized just in time compilation possible.
CLFunctionCompiler(OpenCLDevice, Function, String) - Constructor for class neureka.devices.opencl.utility.CLFunctionCompiler
 
CLGEMM - Class in neureka.backend.main.operations.linear.internal.opencl
 
CLGEMM() - Constructor for class neureka.backend.main.operations.linear.internal.opencl.CLGEMM
 
CLImplementation - Class in neureka.backend.main.implementations
This class is the ExecutorFor < OpenCLDevice > implementation used to properly call an OpenCLDevice instance via the ExecutionOn < OpenCLDevice > lambda implementation receiving an instance of the ExecutionCall class.
CLImplementation(ImplementationFor<OpenCLDevice>, int) - Constructor for class neureka.backend.main.implementations.CLImplementation
 
CLMatMul - Class in neureka.backend.main.implementations.matmul
 
CLMatMul() - Constructor for class neureka.backend.main.implementations.matmul.CLMatMul
 
clone() - Method in class neureka.backend.api.BackendContext
This method produces a shallow copy of this BackendContext.
clone() - Method in class neureka.view.NDPrintSettings
 
CLRandomization - Class in neureka.backend.main.implementations.elementwise
 
CLRandomization() - Constructor for class neureka.backend.main.implementations.elementwise.CLRandomization
 
CLReduce - Class in neureka.backend.main.operations.linear.internal.opencl
 
CLReduce(CLReduce.Type) - Constructor for class neureka.backend.main.operations.linear.internal.opencl.CLReduce
 
CLReduce.Type - Enum in neureka.backend.main.operations.linear.internal.opencl
 
CLScalarBroadcast - Class in neureka.backend.main.implementations.broadcast
 
CLScalarBroadcast(String, String, String) - Constructor for class neureka.backend.main.implementations.broadcast.CLScalarBroadcast
 
CLScalarBroadcastAddition - Class in neureka.backend.main.implementations.broadcast
 
CLScalarBroadcastAddition(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLScalarBroadcastAddition
 
CLScalarBroadcastDivision - Class in neureka.backend.main.implementations.broadcast
 
CLScalarBroadcastDivision(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLScalarBroadcastDivision
 
CLScalarBroadcastIdentity - Class in neureka.backend.main.implementations.broadcast
 
CLScalarBroadcastIdentity(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLScalarBroadcastIdentity
 
CLScalarBroadcastModulo - Class in neureka.backend.main.implementations.broadcast
 
CLScalarBroadcastModulo(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLScalarBroadcastModulo
 
CLScalarBroadcastMultiplication - Class in neureka.backend.main.implementations.broadcast
 
CLScalarBroadcastMultiplication(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLScalarBroadcastMultiplication
 
CLScalarBroadcastPower - Class in neureka.backend.main.implementations.broadcast
 
CLScalarBroadcastPower(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLScalarBroadcastPower
 
CLScalarBroadcastSubtraction - Class in neureka.backend.main.implementations.broadcast
 
CLScalarBroadcastSubtraction(String) - Constructor for class neureka.backend.main.implementations.broadcast.CLScalarBroadcastSubtraction
 
CLScalarFunction - Class in neureka.backend.main.implementations.scalar
 
CLScalarFunction(ScalarFun) - Constructor for class neureka.backend.main.implementations.scalar.CLScalarFunction
 
CLSettings - Class in neureka.backend.ocl
OpenCL related settings for the CLBackend extension.
CLSettings() - Constructor for class neureka.backend.ocl.CLSettings
 
CLSum - Class in neureka.backend.main.operations.linear.internal.opencl
 
CLSum() - Constructor for class neureka.backend.main.operations.linear.internal.opencl.CLSum
 
CommonMachine - Class in neureka.devices.host.machine
Stuff common to Hardware and ConcreteMachine.
CommonMachine(Hardware, Runtime) - Constructor for class neureka.devices.host.machine.CommonMachine
 
CommonMachine(String, BasicMachine[]) - Constructor for class neureka.devices.host.machine.CommonMachine
new MemoryThreads[] { SYSTEM, L3, L2, L1 } or new MemoryThreads[] { SYSTEM, L2, L1 } or in worst case new MemoryThreads[] { SYSTEM, L1 }
compareTo(Hardware) - Method in class neureka.devices.host.machine.Hardware
 
compileAdHocKernel(String, String) - Method in class neureka.devices.opencl.OpenCLDevice
This method compiles so called "ad hoc" kernel.
compileAndGetAdHocKernel(String, String) - Method in class neureka.devices.opencl.OpenCLDevice
This method compiles and returns the KernelCaller for a so called "ad hoc" kernel.
Component<O> - Interface in neureka.common.composition
This interface alongside the AbstractComponentOwner class define a simple component system.
Component.IsBeing - Enum in neureka.common.composition
Entries of this enum represent events describing updates to the state of the owner of a given Component instance.
Component.OwnerChangeRequest<O> - Interface in neureka.common.composition
Component.OwnerChangeRequest implementation instances will be passed to the Component.update(OwnerChangeRequest) method which inform a given component about a state change related to said component.
ComponentOwner<C> - Interface in neureka.common.composition
A component owner is a thing holding components which can be accessed by their type class.
concat() - Method in class neureka.math.Functions
 
concatAt(int, Nda<V>, Nda<V>...) - Method in interface neureka.Nda
This method concatenates the provided nd-arrays together with this nd-array along a specified axis.
concatAt(int, Nda<V>) - Method in interface neureka.Nda
This method concatenates the provided nd-array together with this nd-array along a specified axis.
concatAt(int, Nda<V>, Nda<V>...) - Method in interface neureka.Tensor
This method concatenates the provided nd-arrays together with this nd-array along a specified axis.
concatAt(int, Nda<V>) - Method in interface neureka.Tensor
This method concatenates the provided nd-array together with this nd-array along a specified axis.
ConcreteMachine - Class in neureka.devices.host.machine
 
confidence() - Method in class neureka.backend.api.BackendExtension.DeviceOption
 
configure(Object) - Static method in class neureka.Neureka
This allows you to configure Neureka using a Groovy DSL.
construct(int[], int[], int[]) - Static method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
 
construct(int[], int[], int[]) - Static method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
 
construct(int[], int[], int[]) - Static method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
 
construct(int[], int[], int[]) - Static method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
 
construct() - Static method in class neureka.ndim.config.types.simple.Simple0DConfiguration
 
construct(int[], int[]) - Static method in class neureka.ndim.config.types.simple.Simple1DConfiguration
 
construct(int[], int[]) - Static method in class neureka.ndim.config.types.simple.Simple2DConfiguration
 
construct(int[], int[]) - Static method in class neureka.ndim.config.types.simple.Simple3DConfiguration
 
construct(int[], int[]) - Static method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
 
construct(int[], int[]) - Static method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
 
construct(int[], int[], int[], int[], int[]) - Static method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
 
construct(int[], int[], int[], int[], int[]) - Static method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
 
construct(int[], int[], int[], int[], int[]) - Static method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
 
construct(int[], int[], int[], int[], int[]) - Static method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
 
construct(int[]) - Static method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
 
contains(Tensor<V>) - Method in class neureka.devices.AbstractBaseDevice
 
contains(Tensor<V>) - Method in interface neureka.devices.Storage
 
contains(Tensor<V>) - Method in interface neureka.Tensor
This method name translates to the "in" keyword in Kotlin! The same is true for the "isCase" method in Groovy.
conv() - Method in class neureka.math.Functions
 
conv(Tensor<V>) - Method in interface neureka.Tensor
This method performs convolution between this tensor and the one passed as argument.
convDot(Tensor<V>) - Method in interface neureka.Tensor
This method performs a convolutional based dot product between the last dimension of this tensor and the first dimension of the passed tensor.
convert(Object, Class<T>) - Method in class neureka.common.utility.DataConverter
This method embodies the purpose of this class.
convertToHolder(Object) - Method in class neureka.dtype.custom.F32
 
convertToHolder(Object) - Method in class neureka.dtype.custom.F64
 
convertToHolder(Object) - Method in class neureka.dtype.custom.I16
 
convertToHolder(Object) - Method in class neureka.dtype.custom.I32
 
convertToHolder(Object) - Method in class neureka.dtype.custom.I64
 
convertToHolder(Object) - Method in class neureka.dtype.custom.I8
 
convertToHolder(Object) - Method in class neureka.dtype.custom.UI16
 
convertToHolder(Object) - Method in class neureka.dtype.custom.UI32
 
convertToHolder(Object) - Method in class neureka.dtype.custom.UI64
 
convertToHolder(Object) - Method in class neureka.dtype.custom.UI8
 
convertToHolder(Object) - Method in interface neureka.dtype.NumericType
This method is a generic converter from any object to an instance of the HolderType parameter specified by an implementation of this interface.
convertToHolderArray(Object) - Method in class neureka.dtype.custom.F32
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.F64
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.I16
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.I32
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.I64
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.I8
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.UI16
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.UI32
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.UI64
 
convertToHolderArray(Object) - Method in class neureka.dtype.custom.UI8
 
convertToHolderArray(Object) - Method in interface neureka.dtype.NumericType
This method is a generic converter from any object to an instance of the HolderType parameter specified by an implementation of this interface.
convertToTarget(Object) - Method in class neureka.dtype.custom.F32
 
convertToTarget(Object) - Method in class neureka.dtype.custom.F64
 
convertToTarget(Object) - Method in class neureka.dtype.custom.I16
 
convertToTarget(Object) - Method in class neureka.dtype.custom.I32
 
convertToTarget(Object) - Method in class neureka.dtype.custom.I64
 
convertToTarget(Object) - Method in class neureka.dtype.custom.I8
 
convertToTarget(Object) - Method in class neureka.dtype.custom.UI16
 
convertToTarget(Object) - Method in class neureka.dtype.custom.UI32
 
convertToTarget(Object) - Method in class neureka.dtype.custom.UI64
 
convertToTarget(Object) - Method in class neureka.dtype.custom.UI8
 
convertToTarget(Object) - Method in interface neureka.dtype.NumericType
This method is a generic converter from any object to an instance of the TargetType parameter specified by an implementation of this interface.
convertToTargetArray(Object) - Method in class neureka.dtype.custom.F32
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.F64
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.I16
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.I32
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.I64
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.I8
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.UI16
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.UI32
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.UI64
 
convertToTargetArray(Object) - Method in class neureka.dtype.custom.UI8
 
convertToTargetArray(Object) - Method in interface neureka.dtype.NumericType
This method is a generic converter from any object to an instance of the TargetArrayType parameter specified by an implementation of this interface.
Convolution - Class in neureka.backend.main.operations.linear
 
Convolution() - Constructor for class neureka.backend.main.operations.linear.Convolution
 
ConvUtil - Class in neureka.backend.main.operations
 
ConvUtil() - Constructor for class neureka.backend.main.operations.ConvUtil
 
COPY - Class in neureka.backend.main.operations.linear.internal.blas
The ?copy routines perform a vector-vector operation defined as y = x, where x and y are vectors.
COPY() - Constructor for class neureka.backend.main.operations.linear.internal.blas.COPY
 
copyOf(T[]) - Static method in class neureka.backend.main.operations.linear.internal.blas.COPY
 
cores - Variable in class neureka.devices.host.machine.CommonMachine
The total number of processor cores.
cos() - Method in class neureka.math.Functions
 
cos() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
COSINUS - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Cosinus - Class in neureka.backend.main.operations.functions
 
Cosinus() - Constructor for class neureka.backend.main.operations.functions.Cosinus
 
count() - Method in class neureka.devices.ReferenceCounter
 
count(Predicate<V>) - Method in interface neureka.Nda
Iterates over every element of this nd-array, and counts the number of times the provided lambda matches the items of this array.
count(Predicate<Integer>) - Method in interface neureka.Shape
 
CPU - Class in neureka.devices.host
The CPU class, one of many implementations of the Device interface, is simply supposed to be an API for dispatching threaded workloads onto the CPU as well as reading from or writing to tensors it stores.
CPU.IndexedWorkload - Interface in neureka.devices.host
 
CPU.JVMExecutor - Class in neureka.devices.host
The CPU.JVMExecutor offers a similar functionality as the parallel stream API, however it differs in that the CPU.JVMExecutor is processing CPU.RangeWorkload lambdas instead of simply exposing a single index or concrete elements for a given workload size.
CPU.RangeWorkload - Interface in neureka.devices.host
A simple functional interface for executing a range whose implementations will either be executed sequentially or they are being dispatched to a thread-pool, given that the provided workload is large enough.
CPUBackend - Class in neureka.backend.cpu
This class loads the CPU operations into the Neureka library context.
CPUBackend() - Constructor for class neureka.backend.cpu.CPUBackend
 
CPUBiElementWise - Class in neureka.backend.main.implementations.elementwise
 
CPUBiElementWise() - Constructor for class neureka.backend.main.implementations.elementwise.CPUBiElementWise
 
CPUBiElementWiseAddition - Class in neureka.backend.main.implementations.elementwise
 
CPUBiElementWiseAddition() - Constructor for class neureka.backend.main.implementations.elementwise.CPUBiElementWiseAddition
 
CPUBiElementWiseDivision - Class in neureka.backend.main.implementations.elementwise
 
CPUBiElementWiseDivision() - Constructor for class neureka.backend.main.implementations.elementwise.CPUBiElementWiseDivision
 
CPUBiElementWiseModulo - Class in neureka.backend.main.implementations.elementwise
 
CPUBiElementWiseModulo() - Constructor for class neureka.backend.main.implementations.elementwise.CPUBiElementWiseModulo
 
CPUBiElementWiseMultiplication - Class in neureka.backend.main.implementations.elementwise
 
CPUBiElementWiseMultiplication() - Constructor for class neureka.backend.main.implementations.elementwise.CPUBiElementWiseMultiplication
 
CPUBiElementWisePower - Class in neureka.backend.main.implementations.elementwise
 
CPUBiElementWisePower() - Constructor for class neureka.backend.main.implementations.elementwise.CPUBiElementWisePower
 
CPUBiElementWiseSubtraction - Class in neureka.backend.main.implementations.elementwise
 
CPUBiElementWiseSubtraction() - Constructor for class neureka.backend.main.implementations.elementwise.CPUBiElementWiseSubtraction
 
CPUBiFun - Interface in neureka.backend.main.implementations.fun.api
 
CPUBroadcast - Class in neureka.backend.main.implementations.broadcast
 
CPUBroadcast() - Constructor for class neureka.backend.main.implementations.broadcast.CPUBroadcast
 
CPUBroadcastAddition - Class in neureka.backend.main.implementations.broadcast
 
CPUBroadcastAddition() - Constructor for class neureka.backend.main.implementations.broadcast.CPUBroadcastAddition
 
CPUBroadcastDivision - Class in neureka.backend.main.implementations.broadcast
 
CPUBroadcastDivision() - Constructor for class neureka.backend.main.implementations.broadcast.CPUBroadcastDivision
 
CPUBroadcastModulo - Class in neureka.backend.main.implementations.broadcast
 
CPUBroadcastModulo() - Constructor for class neureka.backend.main.implementations.broadcast.CPUBroadcastModulo
 
CPUBroadcastMultiplication - Class in neureka.backend.main.implementations.broadcast
 
CPUBroadcastMultiplication() - Constructor for class neureka.backend.main.implementations.broadcast.CPUBroadcastMultiplication
 
CPUBroadcastPower - Class in neureka.backend.main.implementations.broadcast
 
CPUBroadcastPower() - Constructor for class neureka.backend.main.implementations.broadcast.CPUBroadcastPower
 
CPUBroadcastSubtraction - Class in neureka.backend.main.implementations.broadcast
 
CPUBroadcastSubtraction() - Constructor for class neureka.backend.main.implementations.broadcast.CPUBroadcastSubtraction
 
CPUBroadcastSummation - Class in neureka.backend.main.implementations.broadcast
 
CPUBroadcastSummation() - Constructor for class neureka.backend.main.implementations.broadcast.CPUBroadcastSummation
 
CPUConvolution - Class in neureka.backend.main.implementations.convolution
 
CPUConvolution() - Constructor for class neureka.backend.main.implementations.convolution.CPUConvolution
 
CPUDot - Class in neureka.backend.main.implementations.linear
 
CPUDot() - Constructor for class neureka.backend.main.implementations.linear.CPUDot
 
CPUElementwiseAssignFun - Class in neureka.backend.main.implementations.elementwise
 
CPUElementwiseAssignFun() - Constructor for class neureka.backend.main.implementations.elementwise.CPUElementwiseAssignFun
 
CPUElementwiseFunction - Class in neureka.backend.main.implementations.elementwise
 
CPUElementwiseFunction(ScalarFun) - Constructor for class neureka.backend.main.implementations.elementwise.CPUElementwiseFunction
 
CPUFun - Interface in neureka.backend.main.implementations.fun.api
 
CPUImplementation - Class in neureka.backend.main.implementations
This class is a wrapper class for the ImplementationFor<CPU> interface which enables a functional style of implementing the backend API!
It is used merely as a simple formality and implementation type specification.
CPUImplementation.AndImplementation - Interface in neureka.backend.main.implementations
This is represents the second step in the simple builder API for CPUImplementation instances.
CPUMatMul - Class in neureka.backend.main.implementations.matmul
This is a library internal class, do not depend on this.
CPUMatMul() - Constructor for class neureka.backend.main.implementations.matmul.CPUMatMul
 
CPURandomization - Class in neureka.backend.main.implementations.elementwise
 
CPURandomization() - Constructor for class neureka.backend.main.implementations.elementwise.CPURandomization
 
CPUReduce - Class in neureka.backend.main.operations.other.internal
An implementation of the min and max algorithm running on the CPU.
CPUReduce(CPUReduce.Type) - Constructor for class neureka.backend.main.operations.other.internal.CPUReduce
 
CPUReduce.Type - Enum in neureka.backend.main.operations.other.internal
 
CPUScalaBroadcastPower - Class in neureka.backend.main.implementations.broadcast
 
CPUScalaBroadcastPower() - Constructor for class neureka.backend.main.implementations.broadcast.CPUScalaBroadcastPower
 
CPUScalarBroadcast - Class in neureka.backend.main.implementations.broadcast
 
CPUScalarBroadcast() - Constructor for class neureka.backend.main.implementations.broadcast.CPUScalarBroadcast
 
CPUScalarBroadcastAddition - Class in neureka.backend.main.implementations.broadcast
 
CPUScalarBroadcastAddition() - Constructor for class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastAddition
 
CPUScalarBroadcastDivision - Class in neureka.backend.main.implementations.broadcast
 
CPUScalarBroadcastDivision() - Constructor for class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastDivision
 
CPUScalarBroadcastFunction - Class in neureka.backend.main.implementations.scalar
 
CPUScalarBroadcastFunction(ScalarFun) - Constructor for class neureka.backend.main.implementations.scalar.CPUScalarBroadcastFunction
 
CPUScalarBroadcastIdentity - Class in neureka.backend.main.implementations.broadcast
 
CPUScalarBroadcastIdentity() - Constructor for class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastIdentity
 
CPUScalarBroadcastModulo - Class in neureka.backend.main.implementations.broadcast
 
CPUScalarBroadcastModulo() - Constructor for class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastModulo
 
CPUScalarBroadcastMultiplication - Class in neureka.backend.main.implementations.broadcast
 
CPUScalarBroadcastMultiplication() - Constructor for class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastMultiplication
 
CPUScalarBroadcastSubtraction - Class in neureka.backend.main.implementations.broadcast
 
CPUScalarBroadcastSubtraction() - Constructor for class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastSubtraction
 
CPUScalarFunction - Class in neureka.backend.main.implementations.scalar
 
CPUScalarFunction(ScalarFun) - Constructor for class neureka.backend.main.implementations.scalar.CPUScalarFunction
 
CPUSum - Class in neureka.backend.main.operations.other.internal
An implementation of the sum and may algorithm running on the CPU.
CPUSum() - Constructor for class neureka.backend.main.operations.other.internal.CPUSum
 
create(Tensor<V>) - Method in class neureka.optimization.implementations.AdaGradFactory
 
create(Tensor<V>) - Method in class neureka.optimization.implementations.ADAMFactory
 
create(Tensor<V>, Tensor<V>) - Method in class neureka.optimization.implementations.ADAMFactory
 
create(Tensor<V>) - Method in class neureka.optimization.implementations.MomentumFactory
 
create(Tensor<V>) - Method in class neureka.optimization.implementations.RMSPropFactory
 
create(Tensor<V>) - Method in class neureka.optimization.implementations.SGDFactory
 
create(Tensor<V>) - Method in interface neureka.optimization.OptimizerFactory
 
createDeconvolutionFor(String) - Static method in class neureka.backend.main.operations.ConvUtil
 
CSVHandle - Class in neureka.devices.file
This class is one of many extensions of the AbstractFileHandle which is therefore ultimately an implementation of the FileHandle interface.
CSVHandle(String, Map<String, Object>) - Constructor for class neureka.devices.file.CSVHandle
 
currentCount() - Method in class neureka.devices.ReferenceCounter.ChangeEvent
 

D

D1C - Class in neureka.ndim.config.types
An abstract class for NDConfigurations which are representing tensors of rank 1, meaning the name of this class translates to "Dimension-1-Configuration".
D1C() - Constructor for class neureka.ndim.config.types.D1C
 
D2C - Class in neureka.ndim.config.types
An abstract class for NDConfigurations which are representing tensors of rank 2, meaning the name of this class translates to "Dimension-^2-Configuration".
D2C() - Constructor for class neureka.ndim.config.types.D2C
 
D3C - Class in neureka.ndim.config.types
An abstract class for NDConfigurations which are representing tensors of rank 3, meaning the name of this class translates to "Dimension-3-Configuration".
D3C() - Constructor for class neureka.ndim.config.types.D3C
 
Data<V> - Interface in neureka
A wrapper type for the raw data array of a tensor/nd-array, which is typically provided by implementations of the Device interface.
dataArrayType() - Method in class neureka.dtype.DataType
 
DataConverter - Class in neureka.common.utility
This class is a singleton.
DataConverter.ForTensor - Class in neureka.common.utility
This is a stateful and parallelized converter for converting the internal data array of a tensor to another data array based on a provided lambda.
DataConverter.Utility - Class in neureka.common.utility
This is a static utility class containing the actual conversion logic which is usually referenced by the Converter lambdas via method signatures...
dataType() - Method in interface neureka.Data
 
dataType() - Method in class neureka.devices.AbstractDeviceData
 
DataType<T> - Class in neureka.dtype
This class is a Multiton implementation for wrapping and representing type classes.
dataType - Variable in enum neureka.Tensor.ImageType
 
debug() - Method in class neureka.Neureka.Settings
 
debug(Object) - Method in class neureka.Neureka.Settings
This allows you to configure Neureka using a Groovy DSL.
Debug() - Constructor for class neureka.Neureka.Settings.Debug
 
decrement() - Method in class neureka.devices.ReferenceCounter
 
decrement(int[], int[]) - Static method in class neureka.ndim.config.NDConfiguration.Utility
 
decrement() - Method in interface neureka.ndim.iterator.NDIterator
 
decrement() - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
decrement() - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
decrement() - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
decrement() - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
decrement() - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
decrement() - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
decrement() - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
decrement() - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
decrement() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
decrement() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
decrementUsageCount() - Method in class neureka.devices.AbstractDeviceData
 
decrementUsageCount() - Method in interface neureka.devices.DeviceData
 
deepClone() - Method in interface neureka.Tensor
This is almost identical to the Tensor.deepCopy() method except that the returned tensor will have autograd support, meaning that the cloning will be part of the autograd computation graph, and backpropagation will traverse the cloned tensor as well.
deepCopy() - Method in interface neureka.Nda
This method creates and returns a new nd-array instance which is not only a copy of the configuration of this nd-array but also a copy of the underlying data array.
deepCopy() - Method in interface neureka.Tensor
This method creates and returns a new nd-array instance which is not only a copy of the configuration of this nd-array but also a copy of the underlying data array.
delete() - Method in interface neureka.MutateTensor
Although tensors will be garbage collected when they are not strongly referenced, there is also the option to manually free up the tensor and its associated data in a native environment.
dependsOn(int) - Method in interface neureka.math.Function
Use this to determine if this function directly or indirectly references an input with the provided index.
dependsOn(int) - Method in class neureka.math.implementations.FunctionConstant
 
dependsOn(int) - Method in class neureka.math.implementations.FunctionInput
 
dependsOn(int) - Method in class neureka.math.implementations.FunctionNode
 
dependsOn(int) - Method in class neureka.math.implementations.FunctionVariable
 
derivationCode() - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarAbsolute
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarCbrt
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarCosinus
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarExp
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGaSU
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGaTU
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGaussian
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGaussianFast
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarGeLU
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarIdentity
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarLog10
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarLogarithm
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarQuadratic
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarReLU
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSeLU
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSigmoid
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSiLU
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSinus
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSoftplus
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSoftsign
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarSqrt
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarTanh
 
derivationCode() - Method in class neureka.backend.main.implementations.fun.ScalarTanhFast
 
derive(int[], Tensor[], Function<Integer, Tensor<?>>) - Static method in class neureka.backend.main.operations.operator.Multiplication
 
derive(double[], int, int) - Method in interface neureka.math.Function
Calculates the derivative of a particular input with respect to the output of this Function based on the provided array of inputs, an index targeting the input to be derived and an index for input dependent indexing.
derive(double[], int) - Method in interface neureka.math.Function
Calculates the derivative of a particular input with respect to the output of this Function based on the provided array of inputs and an index targeting the input to be derived.
derive(Tensor<T>[], int, int) - Method in interface neureka.math.Function
 
derive(Tensor<T>[], int) - Method in interface neureka.math.Function
 
derive(List<Tensor<T>>, int, int) - Method in interface neureka.math.Function
 
derive(List<Tensor<T>>, int) - Method in interface neureka.math.Function
 
derive(double[], int) - Method in class neureka.math.implementations.FunctionConstant
 
derive(double[], int, int) - Method in class neureka.math.implementations.FunctionConstant
 
derive(double[], int) - Method in class neureka.math.implementations.FunctionInput
 
derive(double[], int, int) - Method in class neureka.math.implementations.FunctionInput
 
derive(double[], int, int) - Method in class neureka.math.implementations.FunctionNode
 
derive(double[], int) - Method in class neureka.math.implementations.FunctionNode
 
derive(double[], int) - Method in class neureka.math.implementations.FunctionVariable
 
derive(double[], int, int) - Method in class neureka.math.implementations.FunctionVariable
 
detach() - Method in interface neureka.MutateTensor
This method detaches this tensor from its underlying computation-graph or simply does nothing if no graph is present.
Nodes within a computation graph are instances of the "GraphNode" class which are also simple components of the tensors they represent in the graph.
detached() - Method in class neureka.fluent.slicing.AxisSliceBuilder
 
detached() - Method in class neureka.fluent.slicing.SliceBuilder
 
detached() - Method in interface neureka.fluent.slicing.states.AxisOrGet
This method concludes the slicing API by performing the actual slicing and returning the resulting Tensor instance based on the previously specified slice configuration...
detached() - Method in interface neureka.fluent.slicing.states.AxisOrGetTensor
This method concludes the slicing API by performing the actual slicing and returning the resulting Tensor instance based on the previously specified slice configuration...
detached() - Method in interface neureka.fluent.slicing.states.StepsOrAxisOrGetTensor
This method concludes the slicing API by performing the actual slicing and returning the resulting Tensor instance based on the previously specified slice configuration...
detached() - Method in interface neureka.Tensor
This method returns a new tensor detached from any underlying computation-graph or simply does nothing if no graph is present.
Nodes within a computation graph are instances of the "GraphNode" class which are also simple components of the tensors they represent in the graph.
device() - Method in class neureka.backend.api.BackendExtension.DeviceOption
 
Device<V> - Interface in neureka.devices
Implementations of this represent computational devices for storing tensors (instances of the Tensor<V> class), which may also expose a useful API for executing operations on tensors (used in backend operations).
Device.Access<V> - Interface in neureka.devices
Implementations of this represent the access to tensors stored on a device in order to read from or write to said tensor.
Device.In - Interface in neureka.devices
The second part of the method chain of the fluent API for executing tensors on this Device temporarily.
Device.Writer - Interface in neureka.devices
Instances of this complete a request for writing to an accessed tensor stored on a device.
DeviceAlgorithm<C extends DeviceAlgorithm<C>> - Interface in neureka.backend.api
A DeviceAlgorithm is an advanced form of Algorithm which delegates the execution to implementations of ImplementationFor specific Device types.
DeviceCleaner - Interface in neureka.devices
 
DeviceData<V> - Interface in neureka.devices
A sub-interface of the Data interface providing more device specific methods.
DeviceOption(Device<?>, double) - Constructor for class neureka.backend.api.BackendExtension.DeviceOption
 
DeviceQuery - Class in neureka.devices.opencl.utility
A program that queries and prints information about all available devices.
DimFit - Class in neureka.backend.main.operations.other
 
DimFit() - Constructor for class neureka.backend.main.operations.other.DimFit
 
DimTrim - Class in neureka.backend.main.operations.other
 
DimTrim() - Constructor for class neureka.backend.main.operations.other.DimTrim
 
dimTrim() - Method in class neureka.math.Functions
 
dimtrim() - Method in interface neureka.Tensor
This creates a new tensor with the same underlying Data and whose shape is trimmed.
dispatch(Function, ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
 
dispose() - Method in interface neureka.backend.api.BackendExtension
Tells this extension to dispose itself.
dispose() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
dispose() - Method in class neureka.backend.cpu.CPUBackend
 
dispose() - Method in class neureka.backend.ocl.CLBackend
This method will free all the resources occupied by this context, meaning that all platforms and their devices will be disposed.
dispose() - Method in interface neureka.devices.Device
This method signals the device to get ready for garbage collection.
dispose() - Method in class neureka.devices.file.FileDevice
 
dispose() - Method in class neureka.devices.host.CPU
This method will shut down the internal thread-pool used by this class to execute JVM/CPU based operations in parallel.
dispose() - Method in class neureka.devices.opencl.OpenCLDevice
This method tells the to restore all tensors stored on it and release all resources.
dispose() - Method in class neureka.devices.opencl.OpenCLPlatform
 
div() - Method in class neureka.math.Functions
 
div(Tensor<V>) - Method in interface neureka.Tensor
This method will produce the quotient of two tensors with the same rank (or two ranks which can be made compatible with padding ones), where the left operand is this Tensor instance and the right operand is the tensor passed to the method.
div(V) - Method in interface neureka.Tensor
 
divAssign() - Method in class neureka.math.Functions
 
divAssign(Tensor<T>) - Method in interface neureka.MutateTensor
 
divide(int, CPU.RangeWorkload) - Method in class neureka.devices.host.concurrent.WorkScheduler.Divider
 
divide(int, int, CPU.RangeWorkload) - Method in class neureka.devices.host.concurrent.WorkScheduler.Divider
 
Divider(ExecutorService) - Constructor for class neureka.devices.host.concurrent.WorkScheduler.Divider
 
Division - Class in neureka.backend.main.operations.operator
 
Division() - Constructor for class neureka.backend.main.operations.operator.Division
 
doesNotExist() - Method in interface neureka.Nda.Item
 
DOT - Class in neureka.backend.main.operations.linear.internal.blas
The ?dot routines perform a vector-vector reduction operation defined as Equation where xi and yi are elements of vectors x and y.
DOT() - Constructor for class neureka.backend.main.operations.linear.internal.blas.DOT
 
dot() - Method in class neureka.math.Functions
 
dot(Tensor<V>) - Method in interface neureka.Tensor
Performs a dot product between the last dimension of this tensor and the first dimension of the provided tensor.
DotProduct - Class in neureka.backend.main.operations.linear
 
DotProduct() - Constructor for class neureka.backend.main.operations.linear.DotProduct
 
DotProductAlgorithm - Class in neureka.backend.main.algorithms
 
DotProductAlgorithm() - Constructor for class neureka.backend.main.algorithms.DotProductAlgorithm
 
doubleToBigInteger(double[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
doubleToBool(double[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
doubleToByte(double[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
doubleToFloat(double[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
doubleToInt(double[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
doubleToLong(double[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
doubleToShort(double[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
dtype() - Method in class neureka.Neureka.Settings
 
dtype(Object) - Method in class neureka.Neureka.Settings
This allows you to configure Neureka using a Groovy DSL.
DType() - Constructor for class neureka.Neureka.Settings.DType
 

E

elements() - Method in interface neureka.Shape
 
ElementwiseAlgorithm - Class in neureka.backend.main.algorithms
This is lambda based Algorithm implementation providing some basic functionality for implementing custom activation functions.
ElementwiseAlgorithm() - Constructor for class neureka.backend.main.algorithms.ElementwiseAlgorithm
 
ElemWiseUtil - Class in neureka.backend.main.operations
Methods inside this utility class execute only some ExecutionCall arguments in groups if their total number exceeds the arity of an operation.
ElemWiseUtil() - Constructor for class neureka.backend.main.operations.ElemWiseUtil
 
endsFrom(int[]) - Static method in class neureka.backend.main.operations.other.DimTrim
 
ENVIRONMENT - Static variable in class neureka.devices.host.machine.ConcreteMachine
 
equals(Object) - Method in class neureka.common.utility.Cache.LazyEntry
 
equals(Object) - Method in class neureka.devices.host.machine.BasicMachine
 
equals(Object) - Method in class neureka.devices.host.machine.CommonMachine
 
equals(Object) - Method in class neureka.devices.host.machine.ConcreteMachine
 
equals(Object) - Method in class neureka.devices.host.machine.Hardware
 
equals(Object) - Method in class neureka.devices.opencl.KernelCode
 
equals(Object) - Method in class neureka.dtype.DataType
 
equals(Object) - Method in class neureka.ndim.config.AbstractNDC
 
equals(NDConfiguration) - Method in class neureka.ndim.config.AbstractNDC
 
equals(NDConfiguration) - Method in interface neureka.ndim.config.NDConfiguration
 
error() - Method in class neureka.autograd.ADTarget
 
errorCorrectionSupport() - Method in class neureka.devices.opencl.OpenCLDevice
 
Estimator(boolean) - Constructor for class neureka.backend.api.Call.Validator.Estimator
 
every(Predicate<V>) - Method in interface neureka.Nda
Iterates over every element of this nd-array, and checks whether all elements are true according to the provided lambda.
every(Predicate<Integer>) - Method in interface neureka.Shape
 
EXCELLENT - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
execute() - Method in class neureka.autograd.JITProp
This method triggers the continuation of the back-propagation which has been put on hold by saving the pending graph nodes inside this class.
execute(Function, ExecutionCall<? extends Device<?>>) - Method in interface neureka.backend.api.fun.Execution
 
execute(Function, ExecutionCall<?>) - Method in interface neureka.backend.api.Operation
 
execute(Function, ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
 
execute(Function, ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
 
execute(Function, ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
 
execute(boolean, double[], double[], double[], int, int, int) - Static method in class neureka.backend.main.implementations.matmul.CPUMatMul
 
execute(boolean, float[], float[], float[], int, int, int) - Static method in class neureka.backend.main.implementations.matmul.CPUMatMul
 
execute(boolean, long[], long[], long[], int, int, int) - Static method in class neureka.backend.main.implementations.matmul.CPUMatMul
 
execute(boolean, int[], int[], int[], int, int, int) - Static method in class neureka.backend.main.implementations.matmul.CPUMatMul
 
execute(ExecutionCall<? extends Device<?>>) - Method in interface neureka.backend.main.internal.FinalExecutor
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.indexer.Product
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.indexer.Summation
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.linear.Convolution
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.linear.MatMul
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.operator.Addition
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.operator.Division
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.operator.Modulo
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.operator.Multiplication
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.operator.Power
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.operator.Subtraction
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.other.AssignLeft
 
execute(Function, ExecutionCall<?>) - Method in class neureka.backend.main.operations.other.Cat
 
execute(int) - Method in interface neureka.devices.host.CPU.IndexedWorkload
 
execute(int, int) - Method in interface neureka.devices.host.CPU.RangeWorkload
 
execute(Tensor<?>...) - Method in interface neureka.math.Function.Callable
Warning: Tensors returned by this method are eligible for deletion when consumed by other functions.
execute(Call<?>) - Method in interface neureka.math.Function
Warning: Tensors returned by this method are eligible for deletion when consumed by other functions. Use this to pass more context information for execution of input tensors.
execute(Args, Tensor<?>...) - Method in interface neureka.math.Function
Warning: Tensors returned by this method are eligible for deletion when consumed by other functions.
Use this to call this Function alongside with some additional meta-arguments which will be passed to the underlying Operation(s).
execute(Tensor<?>...) - Method in interface neureka.math.Function
Warning: Tensors returned by this method are eligible for deletion when consumed by other functions.
execute(Tensor<?>[], int) - Method in interface neureka.math.Function
Warning: Tensors returned by this method are eligible for deletion when consumed by other functions.
execute(Args, Tensor<?>...) - Method in class neureka.math.implementations.FunctionConstant
 
execute(Args, Tensor<?>...) - Method in class neureka.math.implementations.FunctionInput
 
execute(Args, Tensor<?>...) - Method in class neureka.math.implementations.FunctionNode
 
execute(Args, Tensor<?>...) - Method in class neureka.math.implementations.FunctionVariable
 
executeChange() - Method in interface neureka.common.composition.Component.OwnerChangeRequest
This method will trigger the actual state change identified by the Component.IsBeing constant returned by the Component.OwnerChangeRequest.type() method.
executeDerive(Tensor<?>[], int, int) - Method in interface neureka.math.Function
Warning: Tensors returned by this method are eligible for deletion when consumed by other functions.
executeDerive(Tensor<?>[], int) - Method in interface neureka.math.Function
Warning: Tensors returned by this method are eligible for deletion when consumed by other functions.
executeDeviceAlgorithm(ExecutionCall<? extends Device<?>>) - Static method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
executeFor(Function, ExecutionCall<? extends Device<?>>, FinalExecutor) - Static method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
executeOnCommonDevice(ExecutionCall<?>, Supplier<R>) - Static method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
executeRecursively(String, ExecutionCall<? extends Device<?>>) - Static method in class neureka.backend.main.operations.ConvUtil
 
Execution - Interface in neureka.backend.api.fun
Implementations of this functional interface is supposed to be the final execution procedure responsible for dispatching the execution further into the backend.
ExecutionCall<D extends Device<?>> - Class in neureka.backend.api
This class is a simple container holding references to a targeted Device, Operation and maybe some case specific meta Args needed to execute an array of input tensors which are also wrapped by this.
ExecutionCall.Builder<D extends Device<?>> - Class in neureka.backend.api
 
ExecutionPreparation - Interface in neureka.backend.api.fun
An Algorithm will typically produce a result when executing an ExecutionCall.
exists() - Method in interface neureka.Nda.Item
 
EXP - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Exp - Class in neureka.backend.main.operations.functions
 
Exp() - Constructor for class neureka.backend.main.operations.functions.Exp
 
exp() - Method in class neureka.math.Functions
 
exp() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
extension() - Method in interface neureka.devices.file.FileHandle
The file ending which comes after the '.' character...
Extensions - Class in neureka.backend.api
This is an internal class for managing the extension of any given BackendContext class.
Extensions() - Constructor for class neureka.backend.api.Extensions
 

F

F32 - Class in neureka.dtype.custom
 
F32() - Constructor for class neureka.dtype.custom.F32
 
F64 - Class in neureka.dtype.custom
 
F64() - Constructor for class neureka.dtype.custom.F64
 
FACTORY - Static variable in interface neureka.devices.file.FileHandle
 
FallbackAlgorithm - Class in neureka.backend.api.template.algorithms
 
FallbackAlgorithm(String, int, Operation) - Constructor for class neureka.backend.api.template.algorithms.FallbackAlgorithm
 
fastGaus() - Method in class neureka.math.Functions
 
fastTanh() - Method in class neureka.math.Functions
 
FileDevice - Class in neureka.devices.file
The FileDevice is a Device implementation responsible for reading tensors from and or writing them to a given directory.
FileHandle<FinalType,ValType> - Interface in neureka.devices.file
 
fileHandleOf(Tensor<?>) - Method in class neureka.devices.file.FileDevice
 
Filler<T> - Interface in neureka.ndim
Implementations of this ought to map the index of a tensor entry to a value which should be placed at that entry position.
fillRandomly(T, Arg.Seed) - Static method in class neureka.backend.main.implementations.elementwise.CPURandomization
 
fillRandomly(T, String) - Static method in class neureka.backend.main.implementations.elementwise.CPURandomization
 
fillRandomly(T, long) - Static method in class neureka.backend.main.implementations.elementwise.CPURandomization
 
filter(Predicate<V>) - Method in interface neureka.Nda
A convenience method for stream().filter( predicate ).
filter(Predicate<Integer>) - Method in interface neureka.Shape
 
FinalExecutor - Interface in neureka.backend.main.internal
 
find(Class<E>) - Method in class neureka.backend.api.BackendContext
Returns an Optional instance of the provided BackendExtension type or an empty Optional if no extension of that type was found.
find(String) - Method in interface neureka.backend.api.BackendExtension
The BackendContext does not handle Device instances directly.
find(String) - Method in class neureka.backend.cpu.CPUBackend
 
find(String) - Method in class neureka.backend.ocl.CLBackend
 
find(Class<T>) - Method in class neureka.common.composition.AbstractComponentOwner
This method finds a component of the given type/class and returns it as an Optional which may or may not be empty.
find(Class<T>) - Method in interface neureka.common.composition.ComponentOwner
This method finds a component of the given type/class and returns it as an Optional which may or may not be empty.
find(String...) - Static method in interface neureka.devices.Device
This method returns Device instances matching the given search parameter.
find(Class<D>, String...) - Static method in interface neureka.devices.Device
This method returns Device instances matching the given search parameters.
findAdHocKernel(String) - Method in class neureka.devices.opencl.OpenCLDevice
 
findCaptured() - Method in interface neureka.autograd.ADAction
Finds captured Tensor instances in this current action using reflection (This is usually a partial derivative).
findComponentIn(String, int) - Static method in class neureka.math.parsing.ParseUtil
 
findOrCompileAdHocKernel(String, Supplier<String>) - Method in class neureka.devices.opencl.OpenCLDevice
 
findParametersIn(String, int) - Static method in class neureka.math.parsing.ParseUtil
 
findRootTensor() - Method in class neureka.framing.Relation
This method tries to find the root data ancestor of this tensor.
findTip() - Static method in class neureka.devices.opencl.utility.Messages
 
finishedCount() - Method in class neureka.autograd.JITProp
 
first(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator
 
flatMap(Function<V, Stream<R>>) - Method in interface neureka.Nda
A convenience method for nda.stream().flatMap( mapper ), which turns this Nda into a Stream of its items.
flatten(Function, ExecutionCall<D>) - Static method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
flattenForIndexer(Function, ExecutionCall<D>) - Static method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
floatToBigInteger(float[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
floatToByte(float[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
floatToDouble(float[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
floatToInt(float[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
floatToLong(float[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
floatToShort(float[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
forDevice(Class<? extends D>) - Method in class neureka.backend.api.ini.BackendRegistry
 
forEachDerivative(BiConsumer<GraphNode<V>, ADAction>) - Method in class neureka.autograd.GraphNode
 
forEachTarget(Consumer<GraphNode<V>>) - Method in class neureka.autograd.GraphNode
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.F32
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.F64
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.I16
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.I32
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.I64
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.I8
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.UI16
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.UI32
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.UI64
 
foreignHolderBytesToTarget(byte[]) - Method in class neureka.dtype.custom.UI8
 
foreignHolderBytesToTarget(byte[]) - Method in interface neureka.dtype.NumericType
 
forInputs(Tensor<?>[], Supplier<Result>) - Static method in class neureka.backend.main.memory.MemValidator
 
format(String, Object...) - Static method in class neureka.common.utility.LogUtil
 
forOperation(Class<? extends Operation>) - Method in interface neureka.backend.api.ini.ReceiveForDevice
 
ForTensor(Tensor<?>) - Constructor for class neureka.common.utility.DataConverter.ForTensor
 
frame() - Method in interface neureka.Tensor
This is a functionally identical alternative to Tensor.getFrame().
free(Tensor<T>) - Method in interface neureka.devices.Device
Use this to remove the provided tensor from this Device!

free(Tensor<T>) - Method in class neureka.devices.file.FileDevice
 
free() - Method in interface neureka.devices.file.FileHandle
An implementation of this method ought to "free" up the memory used to store a tensor.
free(Tensor<T>) - Method in class neureka.devices.host.CPU
 
free(Tensor<T>) - Method in class neureka.devices.opencl.OpenCLDevice
 
from(int) - Method in class neureka.fluent.slicing.AxisSliceBuilder
This method returns an instance of this very AxisSliceBuilder instance disguised by the To interface.
from(int) - Method in interface neureka.fluent.slicing.states.FromOrAt
This is the starting point for defining the slice range of a specified axis within the method chain/graph exposed by the slice builder API.
from(int) - Method in interface neureka.fluent.slicing.states.FromOrAtTensor
This is the starting point for defining the slice range of a specified axis within the method chain/graph exposed by the slice builder API.
FromOrAt<V> - Interface in neureka.fluent.slicing.states
This is the starting point for defining the slice range of a specified axis within the call transition graph exposed by the slice builder API.
FromOrAtTensor<V> - Interface in neureka.fluent.slicing.states
 
fullDelete() - Method in class neureka.devices.ReferenceCounter
 
fully() - Method in interface neureka.devices.Device.Writer
A convenience method for specifying that the entire data array of the accessed tensor should be written to.
FunAlgorithm - Class in neureka.backend.api.template.algorithms
 
FunAlgorithm(String) - Constructor for class neureka.backend.api.template.algorithms.FunAlgorithm
 
Function - Interface in neureka.math
Besides the Tensor class, which is the core class of Neureka, this interface and its implementations represents the second most important feature of this library.
Function.Callable - Interface in neureka.math
An API for calling a Function after having specified a set of Arg instances through the Function.with(Args) method.
FunctionCache - Class in neureka.math
This class is part of a given BackendContext instance responsible for caching Function references based on their String representation generated by Object.toString() as well as caching of results for active functions.
FunctionCache() - Constructor for class neureka.math.FunctionCache
 
FunctionConstant - Class in neureka.math.implementations
Instances of this implementation of the Function interface are leave nodes within the abstract syntax tree of a function, representing constant numeric values to a function.
FunctionConstant(String) - Constructor for class neureka.math.implementations.FunctionConstant
 
FunctionInput - Class in neureka.math.implementations
Instances of this implementation of the Function interface are leave nodes within the abstract syntax tree of a function, representing inputs to a function.
FunctionNode - Class in neureka.math.implementations
The most common type of Function which references other Functions to form an abstract syntax tree.
FunctionNode(Operation, List<Function>, boolean) - Constructor for class neureka.math.implementations.FunctionNode
 
FunctionParser - Class in neureka.math.parsing
The FunctionParser takes a BackendContext instance based on which it builds Function implementation instances, usually by parsing Strings.
FunctionParser(BackendContext) - Constructor for class neureka.math.parsing.FunctionParser
 
Functions - Class in neureka.math
 
Functions(boolean) - Constructor for class neureka.math.Functions
 
FunctionVariable - Class in neureka.math.implementations
Instances of this implementation of the Function interface are leave nodes within the abstract syntax tree of a function, representing indexed inputs to a function.
FunctionVariable(String) - Constructor for class neureka.math.implementations.FunctionVariable
 
FunDeviceAlgorithm - Class in neureka.backend.api.template.algorithms
 
FunDeviceAlgorithm(String) - Constructor for class neureka.backend.api.template.algorithms.FunDeviceAlgorithm
 

G

GASU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
GaSU - Class in neureka.backend.main.operations.functions
The Self Gated Softsign Unit is based on the Softsign function (a computationally cheap non-exponential quasi Tanh) making it a polynomially based version of the GaTU function which is itself based on the Tanh function.
GaSU() - Constructor for class neureka.backend.main.operations.functions.GaSU
 
GATU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
GaTU - Class in neureka.backend.main.operations.functions
The Self Gated Tanh Unit is based on the Tanh making it an exponentiation based version of the GaSU function which is itself based on the Softsign function (a computationally cheap non-exponential quasi Tanh).
GaTU() - Constructor for class neureka.backend.main.operations.functions.GaTU
 
gaus() - Method in class neureka.math.Functions
 
GAUSSIAN - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Gaussian - Class in neureka.backend.main.operations.functions
 
Gaussian() - Constructor for class neureka.backend.main.operations.functions.Gaussian
 
GAUSSIAN_FAST - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
GaussianFast - Class in neureka.backend.main.operations.functions
 
GaussianFast() - Constructor for class neureka.backend.main.operations.functions.GaussianFast
 
gaussianFrom(long, double[]) - Static method in class neureka.backend.main.implementations.elementwise.CPURandomization
 
GELU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
gelu(double) - Static method in class neureka.backend.main.implementations.fun.ScalarGeLU
 
GeLU - Class in neureka.backend.main.operations.functions
The GELU activation function is based on the standard Gaussian cumulative distribution function and is defined as x Φ( x ) and implemented as x * sigmoid(x * 1.702).
GeLU() - Constructor for class neureka.backend.main.operations.functions.GeLU
 
gelu() - Method in class neureka.math.Functions
 
GEMM - Class in neureka.backend.main.operations.linear.internal.blas
A collection of primitive sub-routines for matrix multiplication performed on continuous arrays which are designed so that they can be vectorized by the JVMs JIT compiler (AVX instructions).
GEMM() - Constructor for class neureka.backend.main.operations.linear.internal.blas.GEMM
 
GEMM.VectorOperationF32 - Interface in neureka.backend.main.operations.linear.internal.blas
 
GEMM.VectorOperationF64 - Interface in neureka.backend.main.operations.linear.internal.blas
 
get() - Method in class neureka.backend.api.Call.Builder
 
get(Class<T>) - Method in class neureka.backend.api.Call
 
get() - Method in class neureka.backend.api.LazyRef
 
get() - Method in class neureka.backend.api.Result
 
get(Class<T>) - Method in class neureka.common.composition.AbstractComponentOwner
This method tries to find a component inside the internal component array whose class matches the one provided.
get(Class<T>) - Method in interface neureka.common.composition.ComponentOwner
Use this to get the component of the specified component type class.
get() - Static method in class neureka.common.utility.DataConverter
This method returns the singleton.
get() - Method in interface neureka.Data
This returns the underlying raw data object of a nd-array or tensor of a backend specific type (e.g.
get(String...) - Static method in interface neureka.devices.Device
This method returns Device instances matching the given search parameter.
get(Class<D>, String...) - Static method in interface neureka.devices.Device
This method returns Device instances matching the given search parameters.
get() - Static method in class neureka.devices.host.CPU
Use this method to access the singleton instance of this CPU class, which is a Device type and default location for freshly instantiated Tensor instances.
get(String) - Method in class neureka.devices.opencl.KernelCache
 
get(cl_device_id) - Method in class neureka.devices.opencl.OpenCLPlatform
 
get() - Method in class neureka.fluent.slicing.AxisSliceBuilder
 
get() - Method in class neureka.fluent.slicing.SliceBuilder
This method will create and return a new slice tensor based on the provided configuration through methods like AxisSliceBuilder.from(int), AxisSliceBuilder.to(int) and AxisSliceBuilder.at(int)...
get() - Method in interface neureka.fluent.slicing.states.AxisOrGet
This method concludes the slicing API by performing the actual slicing and returning the resulting Tensor instance based on the previously specified slice configuration...
get() - Method in interface neureka.fluent.slicing.states.AxisOrGetTensor
This method concludes the slicing API by performing the actual slicing and returning the resulting Tensor instance based on the previously specified slice configuration...
get() - Method in interface neureka.fluent.slicing.states.StepsOrAxisOrGetTensor
This method concludes the slicing API by performing the actual slicing and returning the resulting Tensor instance based on the previously specified slice configuration...
Get<ValueType> - Interface in neureka.framing.fluent
 
get() - Method in interface neureka.framing.fluent.Get
 
get(List<Object>) - Method in class neureka.framing.NDFrame
 
get(Object...) - Method in class neureka.framing.NDFrame
 
get() - Method in class neureka.math.args.Arg
 
get(String, boolean) - Method in class neureka.math.FunctionCache
 
get(int...) - Method in interface neureka.Nda
The following method enables access to specific scalar elements within the nd-array.
get(Object...) - Method in interface neureka.Nda
The following method enables the creation of nd-array slices which access the same underlying data (possibly from a different view).
get(int) - Method in interface neureka.Nda
This getter method creates and returns a slice of the original nd-array.
get(Number) - Method in interface neureka.Nda
This getter method creates and returns a slice of the original nd-array.
get(Object) - Method in interface neureka.Nda
This method enables nd-array slicing! It takes a key of various types and configures a slice nd-array which shares the same underlying data as the original nd-array.
get() - Method in interface neureka.Nda.Item
Get the value at the targeted position or throw an exception if the item does not exist.
get(int) - Method in interface neureka.ndim.iterator.NDIterator
 
get() - Method in interface neureka.ndim.iterator.NDIterator
 
get(int) - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
get() - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
get(int) - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
get() - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
get(int) - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
get() - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
get(int) - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
get() - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
get(int) - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
get() - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
get(int) - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
get() - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
get(int) - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
get() - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
get(int) - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
get() - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
get(int) - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
get() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
 
get(int) - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
get() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
get() - Static method in class neureka.Neureka
The Neureka class represents the configuration of this library.
get(int) - Method in interface neureka.Shape
 
get(int...) - Method in interface neureka.Tensor
The following method enables access to specific scalar elements within the nd-array.
get(Object...) - Method in interface neureka.Tensor
The following method enables the creation of nd-array slices which access the same underlying data (possibly from a different view).
get(int) - Method in interface neureka.Tensor
This getter method creates and returns a slice of the original nd-array.
get(Number) - Method in interface neureka.Tensor
This getter method creates and returns a slice of the original nd-array.
get(Object) - Method in interface neureka.Tensor
This method enables nd-array slicing! It takes a key of various types and configures a slice nd-array which shares the same underlying data as the original nd-array.
getAbs() - Method in class neureka.math.Functions
 
getActivation() - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarAbsolute
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarCbrt
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarCosinus
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarExp
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGaSU
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGaTU
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGaussian
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGaussianFast
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGeLU
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarIdentity
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarLog10
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarLogarithm
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarQuadratic
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarReLU
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSeLU
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSigmoid
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSiLU
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSinus
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSoftplus
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSoftsign
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSqrt
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarTanh
 
getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarTanhFast
 
getActiveThreadCount() - Method in class neureka.devices.host.CPU.JVMExecutor
Returns the approximate number of threads that are actively executing tasks.
getAdd() - Method in class neureka.math.Functions
 
getAddAssign() - Method in class neureka.math.Functions
 
getAdHocKernel(String) - Method in class neureka.devices.opencl.OpenCLDevice
 
getAgentSupplier() - Method in class neureka.backend.api.Result
 
getAlgorithm() - Method in class neureka.backend.api.ExecutionCall
An ExecutionCall will either already have a targeted Algorithm defined at instantiation or otherwise it will query the associated Operation for an Algorithm best suitable for the state of this ExecutionCall.
getAlgorithm(Class<T>) - Method in interface neureka.backend.api.Operation
Operation implementations embody a component system hosting unique Algorithm instances.
getAlgorithm(Class<T>) - Method in class neureka.backend.api.template.operations.AbstractOperation
Operation implementations embody a component system hosting unique Algorithm instances.
getAlgorithmFor(ExecutionCall<?>) - Method in interface neureka.backend.api.Operation
Alongside a component system made up of Algorithm instances, implementations of this interface also ought to express a routing mechanism which finds the best Algorithm for a given ExecutionCall instance.
getAlgorithmFor(ExecutionCall<?>) - Method in class neureka.backend.api.template.operations.AbstractOperation
 
getAlgorithmName() - Method in interface neureka.backend.api.ini.LoadingContext
 
getAll(Class<T>) - Method in class neureka.common.composition.AbstractComponentOwner
This method tries to find all components inside the internal component array whose classes are sub types of the one provided.
getAll(Class<T>) - Method in interface neureka.common.composition.ComponentOwner
Use this to get all components of the specified component type class.
getAllAlgorithms() - Method in interface neureka.backend.api.Operation
 
getAllAlgorithms() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
getAllAliases() - Method in class neureka.framing.fluent.AxisFrame
 
getAllAliasesForIndex(int) - Method in class neureka.framing.fluent.AxisFrame
 
getAllFunctions() - Method in interface neureka.math.Function
 
getAndRemovePendingError() - Method in class neureka.autograd.GraphNode
This method is called by the JITProp component.
getArchitecture() - Static method in class neureka.devices.host.machine.ConcreteMachine
 
getArity() - Method in interface neureka.backend.api.Operation
Arity is the number of arguments or operands that this function or operation takes.
getArity() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
getArity() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getAsInt() - Method in enum neureka.devices.host.concurrent.Parallelism
 
getAt(int...) - Method in interface neureka.Nda
The following method enables access to specific scalar elements within the nd-array.
getAt(Number) - Method in interface neureka.Nda
This getter method creates and returns a slice of the original nd-array.
getAt(Object...) - Method in interface neureka.Nda
The following method enables the creation of nd-array slices which access the same underlying data (possibly from a different view).
getAt(int) - Method in interface neureka.Nda
This getter method creates and returns a slice of the original nd-array.
getAt(Map<?, Integer>) - Method in interface neureka.Nda
This method is most useful when used in Groovy where defining maps is done through square brackets, making it possible to slice nd-arrays like so:
getAt(List<?>) - Method in interface neureka.Nda
This method enables nd-array slicing! It takes a key of various types and configures a slice nd-array which shares the same underlying data as the original nd-array.
getAt(int...) - Method in interface neureka.Tensor
The following method enables access to specific scalar elements within the nd-array.
getAt(Number) - Method in interface neureka.Tensor
This getter method creates and returns a slice of the original nd-array.
getAt(Object...) - Method in interface neureka.Tensor
The following method enables the creation of nd-array slices which access the same underlying data (possibly from a different view).
getAt(int) - Method in interface neureka.Tensor
This getter method creates and returns a slice of the original nd-array.
getAt(Map<?, Integer>) - Method in interface neureka.Tensor
This method is most useful when used in Groovy where defining maps is done through square brackets, making it possible to slice nd-arrays like so:
getAt(List<?>) - Method in interface neureka.Tensor
This method enables nd-array slicing! It takes a key of various types and configures a slice nd-array which shares the same underlying data as the original nd-array.
getAutogradFunction() - Method in class neureka.backend.api.BackendContext
This method returns a Functions instance which wraps pre-instantiated Function instances which are configured to track their computational history.
getBackend() - Method in class neureka.Neureka
 
getCbrt() - Method in class neureka.math.Functions
 
getCellSize() - Method in class neureka.view.NDPrintSettings
A cell size refers to the number of characters reserved to the String representation of a single element.
getChildren() - Method in class neureka.autograd.GraphNode
The children are GraphNode instances which represent computations involving the payload of this very GraphNode instance.
getChildren() - Method in class neureka.framing.Relation
 
getCode() - Method in class neureka.devices.opencl.KernelCode
 
getColLabels() - Method in class neureka.devices.file.CSVHandle
 
getCompletedTaskCount() - Method in class neureka.devices.host.CPU.JVMExecutor
Returns the approximate total number of tasks that have completed execution.
getConcat() - Method in class neureka.math.Functions
 
getContext() - Method in class neureka.devices.opencl.OpenCLPlatform
 
getConv() - Method in class neureka.math.Functions
 
getCoreCount() - Method in class neureka.devices.host.CPU
Returns the number of CPU cores available to the Java virtual machine.
getCorePoolSize() - Method in class neureka.devices.host.CPU.JVMExecutor
Returns the core number of threads.
getCos() - Method in class neureka.math.Functions
 
getData() - Method in class neureka.common.utility.ListReader.Result
 
getData() - Method in interface neureka.MutateNda
At the heart of every tensor is the Data object, which holds the actual data array, a sequence of values of the same type.
getDataAs(Class<A>) - Method in interface neureka.MutateNda
This method returns the data of this nd-array as a Java array of the specified type.
getDataAs(Class<A>) - Method in interface neureka.Nda
Use this to get the items of the underlying Data buffer of this nd-array as a primitive array of the specified type.
getDataAt(int) - Method in interface neureka.Nda
Use this to access elements of the underlying data array without any index transformation applied to it.
getDataForWriting(Class<A>) - Method in interface neureka.MutateTensor
Use this to access the underlying writable data of this tensor if you want to modify it.
getDataSize() - Method in interface neureka.devices.Device.Access
 
getDataSize() - Method in class neureka.devices.file.CSVHandle
 
getDataSize() - Method in interface neureka.devices.file.FileHandle
This method returns the byte size of the data which is stored in the tensor of the file which is managed by this FileHandle.
getDataSize() - Method in class neureka.devices.file.IDXHandle
 
getDataType() - Method in class neureka.devices.file.CSVHandle
 
getDataType() - Method in interface neureka.devices.file.FileHandle
 
getDataType() - Method in class neureka.devices.file.IDXHandle
 
getDataType() - Method in class neureka.devices.opencl.KernelCode
 
getDataType() - Method in interface neureka.Tensor
This method returns the DataType instance of this Tensor, which is a wrapper object for the actual type class representing the value items stored inside the underlying data array of this tensor.
getDefaultAlgorithm() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
getDefaultDataType() - Method in class neureka.Neureka.Settings.DType
 
getDefaultDataTypeClass() - Method in class neureka.Neureka.Settings.DType
The default data type is not relevant most of the time.
getDelimiter() - Method in class neureka.devices.file.CSVHandle
 
getDerivative() - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarAbsolute
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarCbrt
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarCosinus
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarExp
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGaSU
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGaTU
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGaussian
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGaussianFast
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGeLU
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarIdentity
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarLog10
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarLogarithm
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarQuadratic
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarReLU
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSeLU
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSigmoid
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSiLU
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSinus
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSoftplus
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSoftsign
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSqrt
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarTanh
 
getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarTanhFast
 
getDerivative(int) - Method in interface neureka.math.Function
This method builds a new Function which is the derivative of this Function with respect to the provided input index.
getDerivative(int) - Method in class neureka.math.implementations.FunctionConstant
 
getDerivative(int) - Method in class neureka.math.implementations.FunctionInput
 
getDerivative(int) - Method in class neureka.math.implementations.FunctionNode
 
getDerivative(int) - Method in class neureka.math.implementations.FunctionVariable
 
getDerivativeIndex() - Method in class neureka.backend.api.Call
 
getDerivator() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getDevice() - Method in class neureka.backend.api.Call
 
getDevice() - Method in interface neureka.Tensor
 
getDeviceFor(Class<T>) - Method in class neureka.backend.api.Call
 
getDevices() - Method in class neureka.devices.opencl.OpenCLPlatform
 
getDimTrim() - Method in class neureka.math.Functions
 
getDirectory() - Method in class neureka.devices.file.FileDevice
 
getDiv() - Method in class neureka.math.Functions
 
getDivAssign() - Method in class neureka.math.Functions
 
getDot() - Method in class neureka.math.Functions
 
getEstimation() - Method in class neureka.backend.api.Call.Validator.Estimator
 
getEstimator() - Method in class neureka.backend.api.Call.Validator
 
getExecutor() - Method in class neureka.devices.host.CPU
The CPU.JVMExecutor offers a similar functionality as the parallel stream API, however it differs in that the CPU.JVMExecutor is processing CPU.RangeWorkload lambdas instead of simply exposing a single index or concrete elements for a given workload size.
getExp() - Method in class neureka.math.Functions
 
getExtensions() - Method in class neureka.backend.api.BackendContext
 
getFastGaus() - Method in class neureka.math.Functions
 
getFastTanh() - Method in class neureka.math.Functions
 
getFileName() - Method in interface neureka.devices.file.FileHandle
 
getFrame() - Method in interface neureka.Tensor
 
getFunction() - Method in class neureka.autograd.GraphNode
Recorded Function which produced this GraphNode.
getFunction() - Method in class neureka.backend.api.BackendContext
This method returns a Functions instance which wraps pre-instantiated Function instances which are configured to not track their computational history.
getFunctionCache() - Method in class neureka.backend.api.BackendContext
 
getGaus() - Method in class neureka.math.Functions
 
getGelu() - Method in class neureka.math.Functions
 
getGradient() - Method in interface neureka.Tensor
 
getGraphNode() - Method in interface neureka.Tensor
 
getHasDerivatives() - Method in class neureka.view.NDPrintSettings
 
getHasGradient() - Method in class neureka.view.NDPrintSettings
 
getHasRecursiveGraph() - Method in class neureka.view.NDPrintSettings
 
getHasShape() - Method in class neureka.view.NDPrintSettings
 
getHasSlimNumbers() - Method in class neureka.view.NDPrintSettings
 
getHasValue() - Method in class neureka.view.NDPrintSettings
 
getId() - Method in class neureka.devices.opencl.OpenCLDevice
 
getId() - Method in class neureka.devices.opencl.OpenCLPlatform
 
getIdentifier() - Method in interface neureka.backend.api.Operation
Concrete Operation types ought to be representable by a function name.
getIdentifier() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
getIdentifier() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getIdy() - Method in class neureka.math.Functions
 
getImplementationFor(Class<D>) - Method in interface neureka.backend.api.DeviceAlgorithm
An ImplementationFor a specific Device can be accessed by passing the class of the Device for which an implementation should be returned.
getImplementationFor(D) - Method in interface neureka.backend.api.DeviceAlgorithm
An ImplementationFor a specific Device can be accessed by passing the Device for which an implementation should be returned.
getImplementationFor(Class<D>) - Method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
getIndent() - Method in class neureka.view.NDPrintSettings
 
getIndexAndIncrement() - Method in interface neureka.ndim.iterator.NDIterator
 
getIndexAtAlias(Object) - Method in class neureka.framing.fluent.AxisFrame
 
getIndexToIndexAccessPattern() - Method in interface neureka.ndim.config.NDConfiguration
 
getInt(cl_device_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
Returns the value of the device info parameter with the given name
getInts(cl_device_id, int, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
Returns the values of the device info parameter with the given name
getIsAutoConvertingExternalDataToJVMTypes() - Method in class neureka.Neureka.Settings.DType
This flag will determine if foreign data types will be converted into the next best fit (in terms of bits) or if it should be converted into something that does not mess with the representation of the data.
getIsCellBound() - Method in class neureka.view.NDPrintSettings
 
getIsDifferentiable() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getIsIndexer() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getIsInline() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getIsLegacy() - Method in class neureka.view.NDPrintSettings
This flag determines the usage of bracket types, where "[1x3]:(1, 2, 3)" would be the legacy version of "(1x3):[1, 2, 3]".
getIsMultiline() - Method in class neureka.view.NDPrintSettings
 
getIsOperator() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getIsScientific() - Method in class neureka.view.NDPrintSettings
 
getItem() - Method in interface neureka.Nda
Equivalent to the #item(0) and Nda.item().
getItems() - Method in interface neureka.Nda
A more verbose version of the Nda.items() method (best used by JVM languages with property support).
getItemsAs(Class<A>) - Method in interface neureka.Nda
Use this to get the items of this nd-array as a primitive array of the specified type.
getItemType() - Method in interface neureka.Nda
 
getItemTypeClass() - Method in class neureka.dtype.DataType
 
getKernel(ExecutionCall<OpenCLDevice>) - Method in class neureka.devices.opencl.OpenCLDevice
 
getKernel(String) - Method in class neureka.devices.opencl.OpenCLDevice
 
getKernel(String) - Method in class neureka.devices.opencl.OpenCLPlatform
 
getKernelCode() - Method in class neureka.backend.main.implementations.ParsedCLImplementation
 
getKernelCode() - Method in class neureka.backend.main.implementations.SimpleCLImplementation
 
getKernelCode() - Method in interface neureka.devices.opencl.StaticKernelSource
 
getKernelFor(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.ParsedCLImplementation
 
getKernelFor(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.SimpleCLImplementation
 
getKernelFor(ExecutionCall<OpenCLDevice>) - Method in interface neureka.devices.opencl.KernelSource
 
getLabel() - Method in class neureka.framing.NDFrame
 
getLabel() - Method in interface neureka.Nda
A nd-array can have a label.
getLayout() - Method in interface neureka.ndim.config.NDConfiguration
The layout of most tensors is either row major or column major.
getLearningRate() - Method in class neureka.optimization.implementations.ADAM
 
getLn() - Method in class neureka.math.Functions
 
getLoadable() - Method in class neureka.devices.file.FileDevice
 
getLoaded() - Method in class neureka.devices.file.FileDevice
 
getLoader() - Method in interface neureka.backend.api.BackendExtension
 
getLoader() - Method in class neureka.backend.cpu.CPUBackend
 
getLoader() - Method in class neureka.backend.ocl.CLBackend
 
getLocation() - Method in interface neureka.devices.file.FileHandle
 
getLog10() - Method in class neureka.math.Functions
 
getLong(cl_device_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
Returns the value of the device info parameter with the given name
getLongs(cl_device_id, int, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
Returns the values of the device info parameter with the given name
getLongs(int, ByteBuffer, long[]) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
 
getMatMul() - Method in class neureka.math.Functions
 
getMax() - Method in class neureka.math.Functions
 
getMemory() - Static method in class neureka.devices.host.machine.ConcreteMachine
 
getMin() - Method in class neureka.math.Functions
 
getMinus() - Method in class neureka.math.Functions
 
getMinusAssign() - Method in class neureka.math.Functions
 
getMod() - Method in class neureka.math.Functions
 
getModAssign() - Method in class neureka.math.Functions
 
getMode() - Method in class neureka.autograd.GraphNode
This is the getter for an important GraphNode property which holds the auto-differentiation mode used by this instance to decide if a given error should be forward propagated backward propagated or not propagated at all.
getMomentum() - Method in class neureka.optimization.implementations.ADAM
 
getMul() - Method in class neureka.math.Functions
 
getMulAssign() - Method in class neureka.math.Functions
 
getMut() - Method in interface neureka.Nda
This method exposes an API for mutating the state of this tensor.
getMut() - Method in interface neureka.Tensor
This method exposes an API for mutating the state of this tensor.
getName() - Method in interface neureka.backend.api.Algorithm
The name of an Algorithm may be used for OpenCL kernel compilation or simply for debugging purposes to identify which type of algorithm is being executed at any given time...
getName() - Method in class neureka.devices.opencl.KernelCode
 
getNDConf() - Method in interface neureka.ndim.NDimensional
 
getNDPrintSettings() - Method in class neureka.Neureka.Settings.View
Settings for configuring how tensors should be converted to String representations.
getNeg() - Method in class neureka.math.Functions
 
getNewInstance() - Static method in interface neureka.devices.DeviceCleaner
 
getNewOwner() - Method in interface neureka.common.composition.Component.OwnerChangeRequest
 
getNumberOfColumns() - Method in class neureka.devices.file.CSVHandle
 
getNumberOfRows() - Method in class neureka.devices.file.CSVHandle
 
getNumericTypeTarget() - Method in interface neureka.dtype.NumericType
This method returns the NumericType representation of the target type of this class.
getOldOwner() - Method in interface neureka.common.composition.Component.OwnerChangeRequest
 
getOperation(int) - Method in class neureka.backend.api.BackendContext
This method queries the operations in this BackendContext by a provided index integer targeting an entry in the list of Operation implementation instances sitting in this execution context.
getOperation(String) - Method in class neureka.backend.api.BackendContext
This method queries the operations in this BackendContext by a provided identifier which has to match the name of an existing operation.
getOperation() - Method in class neureka.backend.api.ExecutionCall
This returns the operation which will ultimately process this execution call.
getOperation() - Method in interface neureka.math.Function
 
getOperation() - Method in class neureka.math.implementations.FunctionConstant
 
getOperation() - Method in class neureka.math.implementations.FunctionInput
 
getOperation() - Method in class neureka.math.implementations.FunctionNode
 
getOperation() - Method in class neureka.math.implementations.FunctionVariable
 
getOperationIdentidier() - Method in interface neureka.backend.api.ini.LoadingContext
 
getOperationLookupMap() - Method in class neureka.backend.api.BackendContext
This method returns an unmodifiable view of the mapping between the Operation.getIdentifier() / Operation.getOperator() properties and the Operation implementation instances to which they belong.
getOperations() - Method in class neureka.backend.api.BackendContext
This method returns an unmodifiable view of the list of Operation implementation instances managed by this context.
getOperator() - Method in interface neureka.backend.api.Operation
 
getOperator() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
getOperator() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getOrNull() - Method in interface neureka.Data
This returns the underlying raw data object of a nd-array or tensor of a backend specific type (e.g.
getOrNull() - Method in class neureka.devices.AbstractDeviceData
 
getParent() - Method in class neureka.framing.Relation
 
getParents() - Method in class neureka.autograd.GraphNode
 
getPayload() - Method in class neureka.autograd.GraphNode
The value of a graph node is the tensor to which it belongs (is a component of).
getPayloadDataType() - Method in class neureka.autograd.GraphNode
 
getPayloadReferenceVersion() - Method in class neureka.autograd.GraphNode
This variable holds a copy of the version of the payload tensor recorded when this GraphNode instance is instantiated.
getPayloadShape() - Method in class neureka.autograd.GraphNode
Note: This method will never return null even if the actual payload tensor was garbage collected.
getPendingError() - Method in class neureka.autograd.GraphNode
Used by the Just-In-Time back-prop component.
getPermute() - Method in class neureka.math.Functions
 
getPermuteRelationFor(Tensor<V>) - Method in class neureka.framing.Relation
When creating permuted versions of slices then there must be a translation between the shape configuration between this new slice and the original parent tensor from which both slices have been derived.
getPlatform() - Method in class neureka.devices.opencl.OpenCLDevice
 
getPlatforms() - Method in class neureka.backend.ocl.CLBackend
 
getPlus() - Method in class neureka.math.Functions
 
getPlusAssign() - Method in class neureka.math.Functions
 
getPostfix() - Method in class neureka.view.NDPrintSettings
 
getPow() - Method in class neureka.math.Functions
 
getPowAssign() - Method in class neureka.math.Functions
 
getPrefix() - Method in class neureka.view.NDPrintSettings
 
getQuad() - Method in class neureka.math.Functions
 
getRandom() - Method in class neureka.math.Functions
 
getRank() - Method in interface neureka.ndim.NDimensional
 
getRawData() - Method in interface neureka.Nda
This returns an unprocessed version of the underlying data of this nd-array.
getRawItems() - Method in interface neureka.Nda
 
getRelayout() - Method in class neureka.math.Functions
 
getRelu() - Method in class neureka.math.Functions
 
getRepresentativeItemClass() - Method in interface neureka.Tensor
The Class returned by this method is the representative Class of the value items of a concrete AbstractNda but not necessarily the actual Class of a given value item, this is especially true for numeric types, which are represented by implementations of the NumericType interface.
getRepresentativeType() - Method in class neureka.dtype.DataType
 
getReshape() - Method in class neureka.math.Functions
 
getResult() - Method in class neureka.backend.main.memory.MemValidator
 
getRowLabels() - Method in class neureka.devices.file.CSVHandle
 
getRowLimit() - Method in class neureka.view.NDPrintSettings
Very large tensors with a rank larger than 1 might take a lot of vertical space when converted to a String.
getSelu() - Method in class neureka.math.Functions
The Scaled Exponential Linear Unit, or SELU, is an activation functions that induce self-normalizing properties.
getSettings() - Method in class neureka.backend.ocl.CLBackend
 
getShape() - Method in class neureka.common.utility.ListReader.Result
 
getShape() - Method in class neureka.devices.file.CSVHandle
 
getShape() - Method in interface neureka.devices.file.FileHandle
 
getShape() - Method in class neureka.devices.file.IDXHandle
 
getShape() - Method in interface neureka.ndim.NDConstructor
 
getShape() - Method in interface neureka.ndim.NDimensional
 
getSigmoid() - Method in class neureka.math.Functions
 
getSilu() - Method in class neureka.math.Functions
The SiLu activation function, also known as the swish function, is defined as x * sigmoid(x).
getSin() - Method in class neureka.math.Functions
 
getSize(cl_device_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
Returns the value of the device info parameter with the given name
getSize() - Method in interface neureka.ndim.NDConstructor
 
getSize() - Method in interface neureka.ndim.NDimensional
 
getSizes(cl_device_id, int, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
Returns the values of the device info parameter with the given name
getSoftplus() - Method in class neureka.math.Functions
SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.
getSoftsign() - Method in class neureka.math.Functions
The softsign function, defined as x / ( 1 + Math.abs( x ) ), is a computationally cheap 0 centered activation function which rescales the inputs between -1 and 1, very much like the Tanh function.
getSqrt() - Method in class neureka.math.Functions
 
getState() - Method in class neureka.framing.NDFrame
 
getString(cl_device_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
Returns the value of the device info parameter with the given name
getString(cl_platform_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
Returns the value of the platform info parameter with the given name
getStringifier() - Method in class neureka.backend.api.template.operations.OperationBuilder
 
getSubFunctions() - Method in interface neureka.math.Function
 
getSubFunctions() - Method in class neureka.math.implementations.FunctionConstant
 
getSubFunctions() - Method in class neureka.math.implementations.FunctionInput
 
getSubFunctions() - Method in class neureka.math.implementations.FunctionNode
 
getSubFunctions() - Method in class neureka.math.implementations.FunctionVariable
 
getSum() - Method in class neureka.math.Functions
 
getT() - Method in interface neureka.Tensor
A method which returns a new Tensor instance which is a transposed twin of this instance.
This is an alternative to the functionally identical Tensor.T() method.
getTanh() - Method in class neureka.math.Functions
 
getter(At<Object, Get<GetType>>) - Method in class neureka.framing.fluent.AxisFrame.Builder
 
getThreads() - Static method in class neureka.devices.host.machine.ConcreteMachine
 
getTime() - Method in class neureka.optimization.implementations.ADAM
 
getTotalNumberOfDevices() - Method in class neureka.backend.ocl.CLBackend
 
getTotalSize() - Method in class neureka.devices.file.CSVHandle
 
getTotalSize() - Method in interface neureka.devices.file.FileHandle
This method returns the number of bytes which are used to store the tensor in the file whose access is being managed by an implementation of th FileHandle interface.
getTotalSize() - Method in class neureka.devices.file.IDXHandle
 
getTraits() - Method in interface neureka.ndim.config.NDConfiguration
 
getTranspose2D() - Method in class neureka.math.Functions
 
getType() - Method in class neureka.common.utility.ListReader.Result
 
getTypeClassInstance(Class<T>) - Method in class neureka.dtype.DataType
 
getValOf(Class<T>) - Method in class neureka.backend.api.Call
 
getValue() - Method in class neureka.common.utility.Cache.LazyEntry
 
getValueSize() - Method in class neureka.devices.file.CSVHandle
 
getValueSize() - Method in interface neureka.devices.file.FileHandle
This method return the size of the value which is stored in the tensor of the file which is managed by this FileHandle.
getValueSize() - Method in class neureka.devices.file.IDXHandle
 
getVelocity() - Method in class neureka.optimization.implementations.ADAM
 
getVersion() - Method in interface neureka.Tensor
The version number is tracking how often this tensor has been mutated.
globalMemSize() - Method in class neureka.devices.opencl.OpenCLDevice
 
GOOD - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
goodIfAll(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
 
goodIfAll(Call.TensorCompare) - Method in class neureka.backend.api.Call.Validator.Estimator
 
goodIfAny(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
 
goodIfAnyNonNull(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
 
gradient() - Method in interface neureka.Tensor
This is a functionally identical alternative to the Tensor.getGradient() method.
gradientApplyRequested() - Method in interface neureka.Tensor
This flag works alongside two autograd features which can be enabled inside the library settings.
GraphNode<V> - Class in neureka.autograd
Instances of the GraphNode class are components of tensors (Tensor instances) which model and record computations / operations between them.
GraphNode(Function, ExecutionCall<Device<?>>, Supplier<Result>) - Constructor for class neureka.autograd.GraphNode
 
graphNode() - Method in interface neureka.Tensor
This is a functionally identical alternative to Tensor.getGraphNode().
GraphNode.Print - Enum in neureka.autograd
 
groupBy(String, String, String, String) - Static method in class neureka.math.parsing.ParseUtil
 

H

Hardware - Class in neureka.devices.host.machine
This models the cache levels and threads of a CPU using an array of where each entry represents a memory level.
Hardware(String, BasicMachine[]) - Constructor for class neureka.devices.host.machine.Hardware
new BasicMachine[] { SYSTEM, L3, L2, L1 } or new BasicMachine[] { SYSTEM, L2, L1 } or in worst case new BasicMachine[] { SYSTEM, L1 }
has(GraphNode<V>) - Method in class neureka.autograd.GraphNode
This method checks if a given graph node is an AD target of this node.
has(Class<E>) - Method in class neureka.backend.api.BackendContext
Checks if this context has an instance of the provided BackendExtension type.
has(Class<T>) - Method in class neureka.common.composition.AbstractComponentOwner
This method checks if a component identified by the passed Class instance is present inside the stored component collection.
has(Class<T>) - Method in interface neureka.common.composition.ComponentOwner
Use this to check if a component of the specified component type class is present.
has(O) - Method in class neureka.common.utility.Cache
 
has(Tensor<T>) - Method in class neureka.devices.AbstractBaseDevice
This method checks if the passed tensor is stored on this Device instance.
has(Tensor<T>) - Method in interface neureka.devices.Device
Use this to check if a tensor is stored on this Device!

has(Tensor<T>) - Method in class neureka.devices.file.FileDevice
 
has(String) - Method in class neureka.devices.opencl.KernelCache
 
has(cl_device_id) - Method in class neureka.devices.opencl.OpenCLPlatform
 
has(String, boolean) - Method in class neureka.math.FunctionCache
 
has(NDTrait) - Method in interface neureka.ndim.config.NDConfiguration
 
hasAdHocKernel(String) - Method in class neureka.devices.opencl.OpenCLDevice
 
hasChildren() - Method in class neureka.framing.Relation
 
hasDerivatives() - Method in class neureka.autograd.GraphNode
 
hasGradient() - Method in interface neureka.Tensor
Tensors can be components of other tensors which makes the implicitly their gradients.
hashCode() - Method in class neureka.common.utility.Cache.LazyEntry
 
hashCode() - Method in class neureka.devices.host.machine.BasicMachine
 
hashCode() - Method in class neureka.devices.host.machine.CommonMachine
 
hashCode() - Method in class neureka.devices.host.machine.ConcreteMachine
 
hashCode() - Method in class neureka.devices.host.machine.Hardware
 
hashCode() - Method in class neureka.devices.opencl.KernelCode
 
hashCode() - Method in class neureka.dtype.DataType
 
hashCode() - Method in class neureka.ndim.config.AbstractNDC
 
hashCode() - Method in interface neureka.ndim.config.NDConfiguration
 
hasImplementationFor(D) - Method in interface neureka.backend.api.DeviceAlgorithm
 
hasKernel(String) - Method in class neureka.devices.opencl.OpenCLPlatform
 
hasLabelsForAxis(Object) - Method in class neureka.framing.NDFrame
 
hasOperation(Operation) - Method in class neureka.backend.api.BackendContext
 
hasOperation(String) - Method in class neureka.backend.api.BackendContext
 
hasParent() - Method in class neureka.framing.Relation
 
holderArrayType() - Method in class neureka.dtype.custom.F32
 
holderArrayType() - Method in class neureka.dtype.custom.F64
 
holderArrayType() - Method in class neureka.dtype.custom.I16
 
holderArrayType() - Method in class neureka.dtype.custom.I32
 
holderArrayType() - Method in class neureka.dtype.custom.I64
 
holderArrayType() - Method in class neureka.dtype.custom.I8
 
holderArrayType() - Method in class neureka.dtype.custom.UI16
 
holderArrayType() - Method in class neureka.dtype.custom.UI32
 
holderArrayType() - Method in class neureka.dtype.custom.UI64
 
holderArrayType() - Method in class neureka.dtype.custom.UI8
 
holderArrayType() - Method in interface neureka.dtype.NumericType
The holder array type is the JVM type which can hold the data but not necessarily represent it (int[] cant represent uint[]).
holderType() - Method in class neureka.dtype.custom.F32
 
holderType() - Method in class neureka.dtype.custom.F64
 
holderType() - Method in class neureka.dtype.custom.I16
 
holderType() - Method in class neureka.dtype.custom.I32
 
holderType() - Method in class neureka.dtype.custom.I64
 
holderType() - Method in class neureka.dtype.custom.I8
 
holderType() - Method in class neureka.dtype.custom.UI16
 
holderType() - Method in class neureka.dtype.custom.UI32
 
holderType() - Method in class neureka.dtype.custom.UI64
 
holderType() - Method in class neureka.dtype.custom.UI8
 
holderType() - Method in interface neureka.dtype.NumericType
The holder type is the JVM type which can hold the data but not necessarily represent it (int cant represent uint).
HOW_TO_INSTALL_OPENCL - Variable in enum neureka.devices.opencl.utility.Messages.Tips
 
HOW_TO_INSTALL_OPENCL_DRIVERS - Variable in enum neureka.devices.opencl.utility.Messages.Tips
 

I

i() - Method in interface neureka.ndim.iterator.NDIterator
 
i() - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
i() - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
i() - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
i() - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
i() - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
i() - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
i() - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
i() - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
i() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
i() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
I16 - Class in neureka.dtype.custom
 
I16() - Constructor for class neureka.dtype.custom.I16
 
I32 - Class in neureka.dtype.custom
 
I32() - Constructor for class neureka.dtype.custom.I32
 
I64 - Class in neureka.dtype.custom
 
I64() - Constructor for class neureka.dtype.custom.I64
 
I8 - Class in neureka.dtype.custom
The following abstract class implements some basic logic which is applicable across all final concrete classes extending this abstract one.
I8() - Constructor for class neureka.dtype.custom.I8
 
IAXPY - Class in neureka.backend.main.operations.linear.internal.blas
The ?axpy routines perform a vector-vector operation defined as y := a*x + y where: a is a scalar x and y are vectors each with a number of elements that equals n.
IAXPY() - Constructor for class neureka.backend.main.operations.linear.internal.blas.IAXPY
 
id() - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarAbsolute
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarCbrt
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarCosinus
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarExp
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarGaSU
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarGaTU
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarGaussian
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarGaussianFast
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarGeLU
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarIdentity
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarLog10
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarLogarithm
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarQuadratic
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarReLU
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarSeLU
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarSigmoid
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarSiLU
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarSinus
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarSoftplus
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarSoftsign
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarSqrt
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarTanh
 
id() - Method in class neureka.backend.main.implementations.fun.ScalarTanhFast
 
identifier(String) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
IDENTITY - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Identity - Class in neureka.backend.main.operations.functions
 
Identity() - Constructor for class neureka.backend.main.operations.functions.Identity
 
IDOT - Class in neureka.backend.main.operations.linear.internal.blas
The ?dot routines perform a vector-vector reduction operation defined as Equation where xi and yi are elements of vectors x and y.
IDOT() - Constructor for class neureka.backend.main.operations.linear.internal.blas.IDOT
 
IDXHandle - Class in neureka.devices.file
This class is one of many extensions of the AbstractFileHandle which is therefore ultimately an implementation of the FileHandle interface.
IDXHandle(String) - Constructor for class neureka.devices.file.IDXHandle
 
IDXHandle(Tensor<Number>, String) - Constructor for class neureka.devices.file.IDXHandle
 
idy() - Method in class neureka.math.Functions
 
ifValid(T) - Method in class neureka.backend.api.Call.Validator
 
IGEMM - Class in neureka.backend.main.operations.linear.internal.blas
A collection of primitive sub-routines for matrix multiplication performed on continuous arrays which are designed so that they can be vectorized by the JVMs JIT compiler (AVX instructions).
IGEMM() - Constructor for class neureka.backend.main.operations.linear.internal.blas.IGEMM
 
IGEMM.VectorOperationI32 - Interface in neureka.backend.main.operations.linear.internal.blas
 
IGEMM.VectorOperationI64 - Interface in neureka.backend.main.operations.linear.internal.blas
 
image2DMaxHeight() - Method in class neureka.devices.opencl.OpenCLDevice
 
image2DMaxWidth() - Method in class neureka.devices.opencl.OpenCLDevice
 
image3DMaxDepth() - Method in class neureka.devices.opencl.OpenCLDevice
 
image3DMaxHeight() - Method in class neureka.devices.opencl.OpenCLDevice
 
image3DMaxWidth() - Method in class neureka.devices.opencl.OpenCLDevice
 
imageSupport() - Method in class neureka.devices.opencl.OpenCLDevice
 
ImplementationFor<D extends Device<?>> - Interface in neureka.backend.api
Generally speaking, this interface describes the functionality of an implementation of an execution procedure tailored to a specific Device (interface) instance and Algorithm (interface) instance! Instances of implementations of the ImplementationFor interface are components of instances of implementations of the Algorithm interface, which themselves are components of Operation implementation instances.
ImplementationReceiver - Interface in neureka.backend.api.ini
 
in(Supplier<R>) - Method in interface neureka.devices.Device.In
 
increment() - Method in class neureka.devices.ReferenceCounter
 
increment(int[], int[]) - Static method in class neureka.ndim.config.NDConfiguration.Utility
 
increment() - Method in interface neureka.ndim.iterator.NDIterator
 
increment() - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
increment() - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
increment() - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
increment() - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
increment() - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
increment() - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
increment() - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
increment() - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
increment() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
increment() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
incrementUsageCount() - Method in class neureka.devices.AbstractDeviceData
 
incrementUsageCount() - Method in interface neureka.devices.DeviceData
 
incrementVersion(ExecutionCall<?>) - Method in interface neureka.MutateTensor
This method is responsible for incrementing the "_version" field variable which represents the version of the data of this tensor.
indent(int) - Static method in class neureka.view.NdaAsString.Util
 
index() - Method in class neureka.math.implementations.FunctionInput
 
indexOfIndex(int) - Method in interface neureka.ndim.config.NDConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
Use this to calculate the true index for an element in the data array (data array index) based on a provided "virtual index", or "value array index".
indexOfIndex(int) - Method in interface neureka.ndim.NDimensional
This is a convenience method identical to ndArray.getNDConf().indexOfIndex(i).
indexOfIndices(int[]) - Method in interface neureka.ndim.config.NDConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int) - Method in class neureka.ndim.config.types.D1C
 
indexOfIndices(int, int) - Method in class neureka.ndim.config.types.D2C
 
indexOfIndices(int, int, int) - Method in class neureka.ndim.config.types.D3C
 
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int, int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int, int, int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int, int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int, int, int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int, int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int, int, int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int[]) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
The following method calculates the true index for an element in the data array based on a provided index array.
indexOfIndices(int[]) - Method in interface neureka.ndim.NDimensional
This is a convenience method identical to ndArray.getNDConf().indexOfIndices(indices).
INDICES_MAPPER_ID - Static variable in class neureka.backend.main.operations.linear.internal.opencl.CLReduce
 
indicesMap() - Method in interface neureka.ndim.config.NDConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in interface neureka.ndim.config.NDConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
 
indicesMap() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
If one wants to for example access the fourth last item of all items within a tensor based on a scalar index x then the NDConfiguration.indicesMap() is needed as a basis for translating said scalar index x to an array of indices for every axis of the tensor represented by this NDConfiguration.
indicesMap(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
This method receives an axis index and return the indices mapping value of said axis to enable readable access to the indices map of this configuration.
indicesMap() - Method in interface neureka.ndim.NDimensional
 
indicesOfIndex(int) - Method in interface neureka.ndim.config.NDConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
The following method calculates the axis indices for an element in the nd-array array based on a provided "virtual index".
indicesOfIndex(int) - Method in interface neureka.ndim.NDimensional
This is a convenience method identical to ndArray.getNDConf().IndicesOfIndex(i).
init(int, int[]) - Method in interface neureka.ndim.Filler
 
initialScramble(long) - Static method in class neureka.backend.main.implementations.elementwise.CPURandomization
 
input(int) - Method in class neureka.backend.api.Call
 
input(Class<V>, int) - Method in class neureka.backend.api.Call
 
inputIndex() - Method in class neureka.autograd.ADTarget
 
inputs() - Method in class neureka.backend.api.Call
 
INSTANCE - Static variable in interface neureka.devices.DeviceCleaner
 
intoRange(int, int) - Method in interface neureka.devices.Device.Writer
Writes whatever kind of data was previously specified, to the tensors' data into the range targeted by the provided start and limit.
intStream(int, int) - Static method in class neureka.common.utility.DataConverter.Utility
Use this to create a range based IntStream which is only parallel if the provided threshold smaller than the provided workload size.
intToBigInteger(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
intToByte(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
intToDouble(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
intToFloat(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
intToLong(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
intToShort(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
invert(int[]) - Static method in class neureka.backend.main.operations.other.Permute
 
invoke(Supplier<T>) - Method in class neureka.backend.api.BackendContext.Runner
Use this method to supply a lambda which will be executed in the BackendContext which produced this very BackendContext.Runner instance.
invoke(double, double) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(float, float) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(int, int) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(long, long) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(byte, byte) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(short, short) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(boolean, boolean) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(char, char) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(Object, Object) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
 
invoke(double) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(float) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(int) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(long) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(byte) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(short) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(boolean) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(char) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(Object) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
 
invoke(double[], int, double, double[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.AXPY
 
invoke(float[], int, float, float[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.AXPY
 
invoke(double[], int, double[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.DOT
 
invoke(float[], int, float[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.DOT
 
invoke(long[], int, long[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.DOT
 
invoke(int[], int, int[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.DOT
 
invoke(float[], float[], int, float[]) - Method in interface neureka.backend.main.operations.linear.internal.blas.GEMM.VectorOperationF32
 
invoke(double[], double[], int, double[]) - Method in interface neureka.backend.main.operations.linear.internal.blas.GEMM.VectorOperationF64
 
invoke(long[], int, long, long[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.IAXPY
 
invoke(int[], int, int, int[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.IAXPY
 
invoke(long[], int, long[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.IDOT
 
invoke(int[], int, int[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.IDOT
 
invoke(int[], int[], int, int[]) - Method in interface neureka.backend.main.operations.linear.internal.blas.IGEMM.VectorOperationI32
 
invoke(long[], long[], int, long[]) - Method in interface neureka.backend.main.operations.linear.internal.blas.IGEMM.VectorOperationI64
 
invoke(ExecutorService, int, int, int) - Method in class neureka.devices.host.concurrent.WorkScheduler
Synchronous execution - wait until it's finished.
invoke(Tensor<T>...) - Method in interface neureka.math.Function.Callable
This method is functionally identically to Function.Callable.call(Tensor[]), however it is best used in Kotlin, where one can omit the function name entirely and call this Function directly!
invoke(double) - Method in interface neureka.math.Function
Invokes this Function with the provided scalar as a single input and returns the scalar result.
invoke(double[], int) - Method in interface neureka.math.Function
Invokes this Function with the provided array of inputs ad an index for input dependent indexing.
invoke(double...) - Method in interface neureka.math.Function
Invokes this Function with the provided array of inputs.
invoke(Call.Builder<T, D>) - Method in interface neureka.math.Function
Use this to pass more context information for execution of input tensors.
invoke(Args, Tensor<T>...) - Method in interface neureka.math.Function
Use this to call this Function alongside with some additional meta-arguments which will be passed to the underlying Operation(s).
invoke(Tensor<T>) - Method in interface neureka.math.Function
This method is functionally identically to Function.call(Tensor), however it is best used in Kotlin, where one can omit the function name entirely and call this Function directly!
invoke(List<Tensor<T>>) - Method in interface neureka.math.Function
This method is functionally identically to Function.call(List), however it is best used in Kotlin, where one can omit the function name entirely and call this Function directly!
invoke(Tensor<T>[], int) - Method in interface neureka.math.Function
This method is functionally identically to Function.call(Tensor[], int), however it is best used in Kotlin, where one can omit the function name entirely and call this Function directly!
invoke(Tensor<T>...) - Method in interface neureka.math.Function
This method is functionally identically to Function.call(Tensor[]), however it is best used in Kotlin, where one can omit the function name entirely and call this Function directly!
is(Class<?>) - Method in interface neureka.Tensor
This method compares the passed class with the underlying data-type of this NDArray.
isAnOperation(String) - Static method in class neureka.math.parsing.ParseUtil
 
isApplyingGradientWhenRequested() - Method in class neureka.Neureka.Settings.AutoGrad
Gradients will only be applied if requested.
isApplyingGradientWhenTensorIsUsed() - Method in class neureka.Neureka.Settings.AutoGrad
Gradients will automatically be applied (or JITed) to tensors as soon as they are being used for calculation (GraphNode instantiation).
isAutoConvertToFloat() - Method in class neureka.backend.ocl.CLSettings
 
isBranch() - Method in interface neureka.Tensor
Tensors which are used or produced by the autograd system will have a GraphNode component attached to them.
isCase(Tensor<V>) - Method in interface neureka.Tensor
This method name translates to the "in" keyword in Groovy! The same is true for the "contains" method in Kotlin.
isCompact() - Method in interface neureka.ndim.config.NDConfiguration
NDConfiguration instance where this flag is true will most likely not be slices because they have no offset (all 0) and a compact spread / step array (all 1).
isCompatible(NDConfiguration.Layout) - Method in enum neureka.ndim.config.NDConfiguration.Layout
 
isDeleted() - Method in interface neureka.Tensor
This will check if the MutateTensor.delete() method was previously called on this tensor.
isDeletingIntermediateTensors() - Method in class neureka.Neureka.Settings.Debug
Function instances will produce hidden intermediate results when executing an array of inputs.
isDifferentiable() - Method in interface neureka.backend.api.Operation
Deprecated.
isDifferentiable() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
isDifferentiable(boolean) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
isDoingAD() - Method in interface neureka.math.Function
Only branch Functions can do autograd / 'Auto-Differentiation', meaning functions whose Function.isFlat() flag is set to false!
isDoingAD() - Method in class neureka.math.implementations.FunctionConstant
 
isDoingAD() - Method in class neureka.math.implementations.FunctionInput
 
isDoingAD() - Method in class neureka.math.implementations.FunctionNode
 
isDoingAD() - Method in class neureka.math.implementations.FunctionVariable
 
isDone() - Method in class neureka.autograd.JITProp
 
isEmpty() - Method in class neureka.devices.AbstractBaseDevice
A device is empty if there are no tensors stored on it.
isEmpty() - Method in interface neureka.devices.Storage
 
isEmpty() - Method in interface neureka.Tensor
A tensor is empty if it's Data storage is null.
isFirstColIsIndex() - Method in class neureka.devices.file.CSVHandle
 
isFirstRowIsLabels() - Method in class neureka.devices.file.CSVHandle
 
isFlat() - Method in interface neureka.math.Function
 
isFlat() - Method in class neureka.math.implementations.FunctionConstant
 
isFlat() - Method in class neureka.math.implementations.FunctionInput
 
isFlat() - Method in class neureka.math.implementations.FunctionNode
 
isFlat() - Method in class neureka.math.implementations.FunctionVariable
 
isFullSlice() - Method in interface neureka.Nda
If this nd-array is a full slice of a parent nd-array then this method will yield true.
isGraphLeave() - Method in class neureka.autograd.GraphNode
 
isIndexer() - Method in interface neureka.backend.api.Operation
This boolean property tell the Function implementations that this Operation ought to be viewed as something to be indexed.
isIndexer() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
isIndexer(boolean) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
isInline() - Method in interface neureka.backend.api.Operation
This flag indicates that the implementation of this Operation performs an operation which modifies the inputs to that operation.
isInline() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
isInline(boolean) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
isIntermediate() - Method in interface neureka.Tensor
Intermediate tensors are internal non-user tensors which may be eligible for deletion when further consumed by a Function.
isKeepingDerivativeTargetPayloads() - Method in class neureka.Neureka.Settings.Debug
Every derivative is calculated with respect to some graph node.
isL2Specified() - Method in class neureka.devices.host.machine.Hardware
 
isL3Specified() - Method in class neureka.devices.host.machine.Hardware
 
isLeave() - Method in class neureka.autograd.GraphNode
This node (and the corresponding tensor) was not created by a function! (it's a leave tensor)
isLeave() - Method in interface neureka.Tensor
Tensors which are used or produced by the autograd system will have a GraphNode component attached to them.
isLocked() - Method in class neureka.Neureka.Settings
Locked settings can only be read but not written to.
isOnlyUsingDefaultNDConfiguration() - Method in class neureka.Neureka.Settings.NDim
This flag determines which NDConfiguration implementations should be used for nd-arrays/tensors.
isOperator() - Method in interface neureka.backend.api.Operation
An operator is an alternative to a function like "sum()" or "prod()".
isOperator() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
isOperator(boolean) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
isOutsourced() - Method in interface neureka.Tensor
Outsourced means that the tensor is stored on a Device implementation instance which is not the CPU.
isPartialSlice() - Method in interface neureka.Nda
If this nd-array is a partial slice of a parent nd-array then this method will yield true.
isPartialSlice() - Method in interface neureka.Tensor
If this nd-array is a partial slice of a parent nd-array then this method will yield true.
isPreventingInlineOperations() - Method in class neureka.Neureka.Settings.AutoGrad
Inline operations are operations where the data of a tensor passed into an operation is being modified.
isReliesOnJustInTimeProp() - Method in class neureka.autograd.GraphNode
This flag is used for a performance optimization feature namely 'Just In Time Propagation'.
isRetainingPendingErrorForJITProp() - Method in class neureka.Neureka.Settings.AutoGrad
This flag enables an optimization technique which only propagates error values to gradients if needed by a tensor (the tensor is used again) and otherwise accumulate them at divergent differentiation paths within the computation graph.
If the flag is set to true
then error values will accumulate at such junction nodes.
isShallowCopy() - Method in interface neureka.Nda
If this nd-array is a shallow copy of a parent nd-array then this method will yield true.
isShallowCopy() - Method in interface neureka.Tensor
If this nd-array is a shallow copy of a parent nd-array then this method will yield true.
isSimple() - Method in interface neureka.ndim.config.NDConfiguration
The boolean returned by this method simply reports if this configuration is the most basic form of configuration possible for the given shape represented by this instance.
isSlice() - Method in interface neureka.Nda
If this nd-array is a slice of a parent nd-array then this method will yield true.
isSlice() - Method in interface neureka.Tensor
If this nd-array is a slice of a parent nd-array then this method will yield true.
isSliceParent() - Method in interface neureka.Nda
If slices have been derived from this nd-array then it is a "slice parent".
isSliceParent() - Method in interface neureka.Tensor
If slices have been derived from this nd-array then it is a "slice parent".
isSuitableFor(ExecutionCall<? extends Device<?>>) - Method in interface neureka.backend.api.fun.SuitabilityPredicate
When an ExecutionCall instance has been formed then it will be routed by
the given Operation instance to their components, namely :
Algorithm instances !
The ability to decide which algorithm is suitable for a given ExecutionCall instance
is being granted by implementations of the following method.
isSuitableFor(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
The SuitabilityPredicate checks if a given instance of an ExecutionCall is suitable to be executed in ImplementationFor residing in this Algorithm as components.
isSuitableFor(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
The SuitabilityPredicate checks if a given instance of an ExecutionCall is suitable to be executed in ImplementationFor residing in this Algorithm as components.
isSuitableFor(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
 
isUndefined() - Method in interface neureka.Tensor
A tensor is "undefined" if it has either no NDConfiguration implementation instance or this instance does not have a shape set for this Tensor which is needed for a tensor to also have a rank and dimensionality...
isUsedAsDerivative() - Method in class neureka.autograd.GraphNode
The chain-rule states that the derivative of f(x) = h(g(x)) with respect to x is: g'(x) * h'(g(x)) An example would be: f(x) = ((x*y)*z) f'(x) = (1*y) * (1*z) = z*y The values z,y or z*y must not be deleted as they are needed for back-propagation!
isValid() - Method in class neureka.backend.api.Call.Validator
 
isVirtual() - Method in interface neureka.ndim.config.NDConfiguration
 
isVirtual() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
isVirtual() - Method in interface neureka.Tensor
A Virtual tensor is a tensor whose underlying data array is of size 1, holding only a single value.
isWronglyIntermediate() - Method in class neureka.backend.main.memory.MemValidator
 
isWronglyNonIntermediate() - Method in class neureka.backend.main.memory.MemValidator
 
item(int) - Method in interface neureka.Nda
The following method returns a single item within this nd-array targeted by the provided integer index.
item(int...) - Method in interface neureka.Nda
This method returns a raw value item within this nd-array targeted by an index array which is expected to hold an index for every dimension of the shape of this nd-array.
item() - Method in interface neureka.Nda
Equivalent to the #item(0) and Nda.getItem().
items() - Method in interface neureka.Nda
A more concise version of the Nda.getItems() method.
itemType() - Method in interface neureka.Nda
 
iterator() - Method in interface neureka.Shape
 
IterByOrIterFromOrAll<V> - Interface in neureka.fluent.building.states
 
IterByOrIterFromOrAllTensor<V> - Interface in neureka.fluent.building.states
 

J

JITProp<V> - Class in neureka.autograd
This class keeps track of graph nodes which require back-propagation in order to be able to continue the process at a later point in time (based on some configurable conditions).
JITProp(Set<GraphNode<V>>) - Constructor for class neureka.autograd.JITProp
 
JVMExecutor() - Constructor for class neureka.devices.host.CPU.JVMExecutor
 

K

K - Static variable in class neureka.devices.host.machine.CommonMachine
 
keep(Tensor<?>[], Supplier<T>) - Static method in class neureka.backend.main.memory.MemUtil
This method makes sure that the provided tensors do not get deleted by setting the Tensor.isIntermediate() flag to off during the execution of the provided Supplier lambda! In said lambda the supplied thing will ultimately be returned by this method...
keep(Tensor<?>, Tensor<?>, Supplier<T>) - Static method in class neureka.backend.main.memory.MemUtil
This method makes sure that the provided tensors do not get deleted by setting the Tensor.isIntermediate() flag to off during the execution of the provided Supplier lambda! In said lambda the supplied thing will ultimately be returned by this method...
KernelCache - Class in neureka.devices.opencl
A fixed sized cache for ad-hoc (just in time compiled) OpenCLDevice kernels.
KernelCache() - Constructor for class neureka.devices.opencl.KernelCache
 
KernelCaller - Class in neureka.devices.opencl
Instances of this class are utility factories provided by OpenCLDevice instances.
KernelCaller(cl_kernel, cl_command_queue) - Constructor for class neureka.devices.opencl.KernelCaller
 
KernelCode - Class in neureka.devices.opencl
 
KernelCode(String, String) - Constructor for class neureka.devices.opencl.KernelCode
 
KernelCode(String, String, DataType<?>) - Constructor for class neureka.devices.opencl.KernelCode
 
KernelSource - Interface in neureka.devices.opencl
Provides kernel source code for a provided ExecutionCall.

L

label(String) - Method in interface neureka.MutateNda
Sets the label of this nd-array.
label(String) - Method in interface neureka.MutateTensor
Sets the label of this nd-array.
label() - Method in interface neureka.Nda
A nd-array can have a label.
labelAxes(String[]...) - Method in interface neureka.MutateNda
This method receives a nested String array which ought to contain a label for the index of this tensor.
labelAxes(List<List<Object>>) - Method in interface neureka.MutateNda
This method receives a nested String list which ought to contain a label for the index of this tensor.
labelAxes(Map<Object, List<Object>>) - Method in interface neureka.MutateNda
This method provides the ability to label not only the indices of the shape of this tensor, but also the dimension of the shape.
labelAxes(String[]...) - Method in interface neureka.MutateTensor
This method receives a label for this tensor and a nested String array which ought to contain a label for the index of this tensor.
labelAxes(List<List<Object>>) - Method in interface neureka.MutateTensor
This method receives a nested String list which ought to contain a label for the index of this tensor.
labelAxes(Map<Object, List<Object>>) - Method in interface neureka.MutateTensor
This method provides the ability to label not only the indices of the shape of this tensor, but also the dimension of the shape.
last(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator
 
LazyEntry(K, Function<K, V>) - Constructor for class neureka.common.utility.Cache.LazyEntry
 
LazyRef<V> - Class in neureka.backend.api
This will simply fetch a variable from a lambda once and then continuously return this one value.
learningRate() - Method in class neureka.optimization.implementations.SGD
 
like(Tensor<V>) - Static method in interface neureka.Tensor
Use this factory method to instantiate a new tensor with the same data type, shape and memory location (Device instance) as the provided template tensor.
ListReader - Class in neureka.common.utility
This is a simple utility class which traverses nested data structures and converts them into information which can be used to instantiate a tensor, namely: A flat data array, a shape array and a type class.
ListReader.Result - Class in neureka.common.utility
 
ln() - Method in class neureka.math.Functions
 
ln() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
load(BackendRegistry) - Method in interface neureka.backend.api.ini.BackendLoader
 
load() - Method in class neureka.devices.file.CSVHandle
 
load(String) - Method in class neureka.devices.file.FileDevice
 
load(String, Map<String, Object>) - Method in class neureka.devices.file.FileDevice
 
load() - Method in interface neureka.devices.file.FileHandle
An implementation of this method ought to create a new tensor instance containing the data which is stored in the file whose access this FileHandle manages.
load() - Method in class neureka.devices.file.IDXHandle
 
LoadingContext - Interface in neureka.backend.api.ini
 
loadProperties(Neureka) - Static method in class neureka.common.utility.SettingsLoader
 
localMemSize() - Method in class neureka.devices.opencl.OpenCLDevice
 
localMemType() - Method in class neureka.devices.opencl.OpenCLDevice
 
LOG10 - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Log10 - Class in neureka.backend.main.operations.functions
 
Log10() - Constructor for class neureka.backend.main.operations.functions.Log10
 
log10() - Method in class neureka.math.Functions
 
log10() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
LOGARITHM - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Logarithm - Class in neureka.backend.main.operations.functions
 
Logarithm() - Constructor for class neureka.backend.main.operations.functions.Logarithm
 
LogUtil - Class in neureka.common.utility
A utility class for message formatting.
LogUtil() - Constructor for class neureka.common.utility.LogUtil
 
longToBigInteger(long[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
longToByte(long[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
longToDouble(long[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
longToFloat(long[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
longToInt(long[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
longToShort(long[]) - Static method in class neureka.common.utility.DataConverter.Utility
 

M

makeFit(Tensor<?>[], boolean) - Static method in class neureka.backend.main.operations.other.Permute
 
makeSimple() - Static method in class neureka.devices.host.machine.Hardware
 
makeSimple(String, long, int) - Static method in class neureka.devices.host.machine.Hardware
 
map(Function<V, V>) - Method in interface neureka.Nda.Item
Maps this item to an optional value based on the provided lambda.
map(Function<V, V>) - Method in interface neureka.Nda
This method is a convenience method for mapping the items of this nd-array to another nd-array of the same type based on the provided lambda function, which will be applied to all items of this nd-array individually (element-wise).
map(int) - Method in interface neureka.ndim.config.NDConfiguration.IndexToIndexFunction
 
map(Function<Integer, Integer>) - Method in interface neureka.Shape
This method is used to transform a Shape into another Shape by applying a function to it.
map(Function<V, V>) - Method in interface neureka.Tensor
This method is a convenience method for mapping the items of this nd-array to another nd-array of the same type based on the provided lambda function, which will be applied to all items of this nd-array individually (element-wise).
mapTo(Class<T>, Function<V, T>) - Method in interface neureka.Nda
This is a convenience method for mapping a nd-array to a nd-array of new type based on a provided target item type and mapping lambda.
mapTo(Class<T>, Function<V, T>) - Method in interface neureka.Tensor
This is a convenience method for mapping a nd-array to a nd-array of new type based on a provided target item type and mapping lambda.
MatMul - Class in neureka.backend.main.operations.linear
 
MatMul() - Constructor for class neureka.backend.main.operations.linear.MatMul
 
matMul() - Method in class neureka.math.Functions
 
matMul(Tensor<V>) - Method in interface neureka.Tensor
This will produce the matrix product of two tensors with rank 2 (matrices), where the left operand is this Tensor instance and the right operand is the argument passed to the method.
MatMulAlgorithm - Class in neureka.backend.main.algorithms
 
MatMulAlgorithm() - Constructor for class neureka.backend.main.algorithms.MatMulAlgorithm
 
Max - Class in neureka.backend.main.operations.other
 
Max() - Constructor for class neureka.backend.main.operations.other.Max
 
max() - Method in class neureka.math.Functions
 
max() - Method in interface neureka.Tensor
Calculate the max value of all values within this tensor and returns it in the form of a scalar tensor.
maxAddressBits() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxClockFrequenzy() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxComputeUnits() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxConstantBufferSize() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxConstantBufferSizeKB() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxItem(Comparator<V>) - Method in interface neureka.Nda
Returns the maximum item of this nd-array according to the provided Comparator.
maxMemAllocSize() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxReadImageArgs() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxWorkGroupSize() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxWorkItemSimensions() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxWorkItemSizes() - Method in class neureka.devices.opencl.OpenCLDevice
 
maxWriteImageArgs() - Method in class neureka.devices.opencl.OpenCLDevice
 
mean() - Method in interface neureka.Tensor
Calculate the mean value of all values within this tensor and returns it in the form of a scalar tensor.
memory - Variable in class neureka.devices.host.machine.BasicMachine
 
MemUtil - Class in neureka.backend.main.memory
Utility methods for deleting tensors or preventing thereof.
MemValidator - Class in neureka.backend.main.memory
This class validates the states of tensors with respect to memory management before and after a lambda executes a function or some kind of algorithm on said tensors.
Messages - Class in neureka.devices.opencl.utility
 
Messages.Tips - Enum in neureka.devices.opencl.utility
 
Min - Class in neureka.backend.main.operations.other
 
Min() - Constructor for class neureka.backend.main.operations.other.Min
 
min() - Method in class neureka.math.Functions
 
min() - Method in interface neureka.Tensor
Calculate the min value of all values within this tensor and returns it in the form of a scalar tensor.
minItem(Comparator<V>) - Method in interface neureka.Nda
Returns the minimum item of this nd-array according to the provided Comparator.
minus() - Method in class neureka.math.Functions
 
minus(Tensor<V>) - Method in interface neureka.Tensor
Performs subtraction on two tensors with the same rank (or two ranks which can be made compatible with padding ones), where the left operand is this Tensor instance and the right operand is the tensor passed to the method.
minus(V) - Method in interface neureka.Tensor
This method will create a new Tensor with the provided item subtracted from all elements of this Tensor.
minusAssign() - Method in class neureka.math.Functions
 
minusAssign(Tensor<T>) - Method in interface neureka.MutateTensor
 
minusAssign(T) - Method in interface neureka.MutateTensor
 
mod() - Method in class neureka.math.Functions
 
mod(Tensor<V>) - Method in interface neureka.Tensor
Produces the modulus of two tensors with the same rank (or two ranks which can be made compatible with padding ones), where the left operand is this Tensor instance and the right operand is the tensor passed to the method.
mod(int) - Method in interface neureka.Tensor
 
modAssign() - Method in class neureka.math.Functions
 
modAssign(Tensor<T>) - Method in interface neureka.MutateTensor
 
Modulo - Class in neureka.backend.main.operations.operator
 
Modulo() - Constructor for class neureka.backend.main.operations.operator.Modulo
 
Momentum<V extends java.lang.Number> - Class in neureka.optimization.implementations
 
Momentum - Static variable in interface neureka.optimization.Optimizer
 
MomentumFactory - Class in neureka.optimization.implementations
 
MomentumFactory() - Constructor for class neureka.optimization.implementations.MomentumFactory
 
mul() - Method in class neureka.math.Functions
 
mulAssign() - Method in class neureka.math.Functions
 
Multiplication - Class in neureka.backend.main.operations.operator
 
Multiplication() - Constructor for class neureka.backend.main.operations.operator.Multiplication
 
multiply(Tensor<V>) - Method in interface neureka.Tensor
This method is synonymous to the Tensor.times(Tensor) method.
multiply(V) - Method in interface neureka.Tensor
 
multiply(double) - Method in interface neureka.Tensor
 
mut() - Method in interface neureka.Nda
This method exposes an API for mutating the state of this tensor.
mut() - Method in interface neureka.Tensor
This method exposes an API for mutating the state of this tensor.
MutateNda<T> - Interface in neureka
Nd-arrays should be used as immutable data structures mostly, however sometimes it is important to mutate their state for performance reasons.
MutateNda.Item<V> - Interface in neureka
Instances of this are being returned by the Nda.at(int...) method, and they allow you to get or set individual nd-array items
MutateTensor<T> - Interface in neureka
Tensors should be considered immutable, however sometimes it is important to mutate their state for performance reasons.

N

name() - Method in class neureka.devices.opencl.OpenCLDevice
 
Nda<V> - Interface in neureka
Nda, which is an abbreviation of 'N-Dimensional-Array', represents a multidimensional, homogeneously filled fixed-size array of items.
Nda.Item<V> - Interface in neureka
Instances of this are being returned by the Nda.at(int...) method, and they allow you to get individual nd-array items
NdaAsString - Class in neureka.view
This class is in essence a simple wrapper class for a tensor and a StringBuilder Methods in this class use the builder in order to construct a String representation for said tensor.
NdaAsString.Builder - Interface in neureka.view
A builder interface providing multiple different options for building a NdaAsString instance in a fluent way.
NdaAsString.Util - Class in neureka.view
This class is a simple utility class which contains a collection of static and stateless methods containing useful functionalities for tensor stringification.
NdaBuilder<V> - Class in neureka.fluent.building
This is the implementation of the fluent builder API for creating Nda/Tensor instances.
NdaBuilder(Class<V>) - Constructor for class neureka.fluent.building.NdaBuilder
 
ndArrays(Consumer<NDPrintSettings>) - Method in class neureka.Neureka.Settings.View
This allows you to provide a lambda to configure how tensors should be converted to String instances.
NDConfiguration - Interface in neureka.ndim.config
This interface represents the access pattern configuration for the data array of a tensor.
NDConfiguration.IndexToIndexFunction - Interface in neureka.ndim.config
Implementations of this are produced and returned by the NDConfiguration.getIndexToIndexAccessPattern() and their purpose is to translate the item index of a tensor to the index of the item within the underlying data array of said tensor.
NDConfiguration.Layout - Enum in neureka.ndim.config
Types of common data layouts:
ROW_MAJOR
NDConfiguration.Utility - Class in neureka.ndim.config
This utility class provides static methods which are helpful for nd-configuration related operations like reshaping, incrementing or decrementing index arrays...
NDConstructor - Interface in neureka.ndim
 
NDConvolution - Class in neureka.backend.main.algorithms
 
NDConvolution() - Constructor for class neureka.backend.main.algorithms.NDConvolution
 
NDFrame<V> - Class in neureka.framing
Instances of this class are components of tensors, which store aliases for the indices of the tensor.
NDFrame(List<List<Object>>, Tensor<V>, String) - Constructor for class neureka.framing.NDFrame
 
NDFrame(Tensor<V>, String) - Constructor for class neureka.framing.NDFrame
 
NDFrame(Map<Object, List<Object>>, Tensor<V>, String) - Constructor for class neureka.framing.NDFrame
 
ndim() - Method in class neureka.Neureka.Settings
 
ndim(Object) - Method in class neureka.Neureka.Settings
This allows you to configure Neureka using a Groovy DSL.
NDim() - Constructor for class neureka.Neureka.Settings.NDim
 
NDimensional - Interface in neureka.ndim
This interface defines the most essential methods of the nd-array/tensor API, which describe them with respect to their dimensionality.
NDIterator - Interface in neureka.ndim.iterator
An NDIterator is used to iterate over n-dimensional arrays.
NDIterator.NonVirtual - Enum in neureka.ndim.iterator
Defines if a new NDIterator is allowed to be a VirtualNDIterator.
NDPrintSettings - Class in neureka.view
This is simply a mutable container for configuring how Tensor instances ought to be converted to Strings.
NDPrintSettings(Supplier<Boolean>) - Constructor for class neureka.view.NDPrintSettings
 
NDTrait - Enum in neureka.ndim.config
 
NDUtil - Class in neureka.ndim
Static utility methods for the NDArray.
NDUtil() - Constructor for class neureka.ndim.NDUtil
 
neg() - Method in class neureka.math.Functions
 
neg() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
negative() - Method in interface neureka.Tensor
 
neureka - package neureka
 
Neureka - Class in neureka
Neureka is the key access point for thread local / global library settings ( seeNeureka.Settings) as well as execution contexts (see BackendContext) and pre-instantiated Functions.
neureka.autograd - package neureka.autograd
 
neureka.backend.api - package neureka.backend.api
 
neureka.backend.api.fun - package neureka.backend.api.fun
 
neureka.backend.api.ini - package neureka.backend.api.ini
 
neureka.backend.api.template.algorithms - package neureka.backend.api.template.algorithms
 
neureka.backend.api.template.implementations - package neureka.backend.api.template.implementations
 
neureka.backend.api.template.operations - package neureka.backend.api.template.operations
 
neureka.backend.cpu - package neureka.backend.cpu
 
neureka.backend.main.algorithms - package neureka.backend.main.algorithms
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.algorithms.internal - package neureka.backend.main.algorithms.internal
 
neureka.backend.main.implementations - package neureka.backend.main.implementations
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.implementations.broadcast - package neureka.backend.main.implementations.broadcast
 
neureka.backend.main.implementations.convolution - package neureka.backend.main.implementations.convolution
 
neureka.backend.main.implementations.elementwise - package neureka.backend.main.implementations.elementwise
 
neureka.backend.main.implementations.fun - package neureka.backend.main.implementations.fun
 
neureka.backend.main.implementations.fun.api - package neureka.backend.main.implementations.fun.api
 
neureka.backend.main.implementations.linear - package neureka.backend.main.implementations.linear
 
neureka.backend.main.implementations.matmul - package neureka.backend.main.implementations.matmul
 
neureka.backend.main.implementations.scalar - package neureka.backend.main.implementations.scalar
 
neureka.backend.main.internal - package neureka.backend.main.internal
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.memory - package neureka.backend.main.memory
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.operations - package neureka.backend.main.operations
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.operations.functions - package neureka.backend.main.operations.functions
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.operations.indexer - package neureka.backend.main.operations.indexer
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.operations.linear - package neureka.backend.main.operations.linear
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.operations.linear.internal.blas - package neureka.backend.main.operations.linear.internal.blas
Everything in this package should be considered library-private! DO NOT USE CLASSES INSIDE THIS PACKAGE!
neureka.backend.main.operations.linear.internal.opencl - package neureka.backend.main.operations.linear.internal.opencl
 
neureka.backend.main.operations.operator - package neureka.backend.main.operations.operator
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.operations.other - package neureka.backend.main.operations.other
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.backend.main.operations.other.internal - package neureka.backend.main.operations.other.internal
 
neureka.backend.ocl - package neureka.backend.ocl
 
neureka.common.composition - package neureka.common.composition
 
neureka.common.utility - package neureka.common.utility
 
neureka.devices - package neureka.devices
 
neureka.devices.file - package neureka.devices.file
 
neureka.devices.host - package neureka.devices.host
 
neureka.devices.host.concurrent - package neureka.devices.host.concurrent
Everything in this package should be considered library-private! DO NOT USE CLASSES INSIDE THIS PACKAGE!
neureka.devices.host.machine - package neureka.devices.host.machine
Everything in this package should be considered library-private! DO NOT USE CLASSES INSIDE THIS PACKAGE!
neureka.devices.opencl - package neureka.devices.opencl
 
neureka.devices.opencl.utility - package neureka.devices.opencl.utility
 
neureka.dtype - package neureka.dtype
 
neureka.dtype.custom - package neureka.dtype.custom
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.fluent.building - package neureka.fluent.building
 
neureka.fluent.building.states - package neureka.fluent.building.states
 
neureka.fluent.slicing - package neureka.fluent.slicing
 
neureka.fluent.slicing.states - package neureka.fluent.slicing.states
 
neureka.framing - package neureka.framing
 
neureka.framing.fluent - package neureka.framing.fluent
 
neureka.math - package neureka.math
 
neureka.math.args - package neureka.math.args
 
neureka.math.implementations - package neureka.math.implementations
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.math.parsing - package neureka.math.parsing
Everything in this package should be considered library-private! DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE! Code inside this package or any sub-packages might change frequently...
neureka.ndim - package neureka.ndim
 
neureka.ndim.config - package neureka.ndim.config
 
neureka.ndim.config.types - package neureka.ndim.config.types
 
neureka.ndim.config.types.permuted - package neureka.ndim.config.types.permuted
 
neureka.ndim.config.types.simple - package neureka.ndim.config.types.simple
 
neureka.ndim.config.types.sliced - package neureka.ndim.config.types.sliced
 
neureka.ndim.config.types.views - package neureka.ndim.config.types.views
 
neureka.ndim.config.types.views.virtual - package neureka.ndim.config.types.views.virtual
 
neureka.ndim.iterator - package neureka.ndim.iterator
 
neureka.ndim.iterator.types.permuted - package neureka.ndim.iterator.types.permuted
 
neureka.ndim.iterator.types.simple - package neureka.ndim.iterator.types.simple
 
neureka.ndim.iterator.types.sliced - package neureka.ndim.iterator.types.sliced
 
neureka.ndim.iterator.types.virtual - package neureka.ndim.iterator.types.virtual
 
neureka.optimization - package neureka.optimization
 
neureka.optimization.implementations - package neureka.optimization.implementations
 
Neureka.Settings - Class in neureka
This class hosts the settings of the Neureka instance which will be used throughout the library.
Neureka.Settings.AutoGrad - Class in neureka
This class contains settings which are related to the automatic differentiation of tensors.
Neureka.Settings.Debug - Class in neureka
 
Neureka.Settings.DType - Class in neureka
 
Neureka.Settings.NDim - Class in neureka
Settings for configuring the access pattern of nd-arrays/tensors.
Neureka.Settings.View - Class in neureka
Settings for configuring how objects should be converted to String representations.
Neureka.Utility - Class in neureka
 
neureka.view - package neureka.view
 
newChildToParent(Tensor<T>) - Static method in class neureka.framing.Relation
 
newInstance() - Static method in interface neureka.Tensor
This static factory method creates and return a completely empty and undefined tensor which is void of any contents and meaning.
newParentToChildren() - Static method in class neureka.framing.Relation
 
newReshaped(int[]) - Method in class neureka.ndim.config.AbstractNDC
 
newReshaped(int[]) - Method in interface neureka.ndim.config.NDConfiguration
This method enables reshaping for NDConfiguration implementation instances.
newStridesFor(int[]) - Method in enum neureka.ndim.config.NDConfiguration.Layout
 
newTensorLike(Tensor<V>, double) - Static method in class neureka.backend.main.operations.ElemWiseUtil
 
newTensorLike(Class<V>, Shape, boolean, Device<Object>, double) - Static method in class neureka.backend.main.operations.ElemWiseUtil
 
node() - Method in class neureka.autograd.ADTarget
 
none() - Static method in interface neureka.Data
This is a static factory method which returns a Data object which does not contain any data.
none(Predicate<V>) - Method in interface neureka.Nda
Iterates over every element of this nd-array, and checks whether none of the elements match the provided lambda.
none() - Static method in interface neureka.ndim.config.NDConfiguration
 
NOT_GOOD - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
noteFinished(GraphNode<V>) - Method in class neureka.autograd.JITProp
 
nullArgCheck(T, String, Class<?>, String...) - Static method in class neureka.common.utility.LogUtil
 
numberOfArgs() - Method in interface neureka.math.Function
 
numberOfBytes() - Method in class neureka.dtype.custom.F32
 
numberOfBytes() - Method in class neureka.dtype.custom.F64
 
numberOfBytes() - Method in class neureka.dtype.custom.I16
 
numberOfBytes() - Method in class neureka.dtype.custom.I32
 
numberOfBytes() - Method in class neureka.dtype.custom.I64
 
numberOfBytes() - Method in class neureka.dtype.custom.I8
 
numberOfBytes() - Method in class neureka.dtype.custom.UI16
 
numberOfBytes() - Method in class neureka.dtype.custom.UI32
 
numberOfBytes() - Method in class neureka.dtype.custom.UI64
 
numberOfBytes() - Method in class neureka.dtype.custom.UI8
 
numberOfBytes() - Method in interface neureka.dtype.NumericType
 
numberOfChannels - Variable in enum neureka.Tensor.ImageType
 
numberOfDataObjects() - Method in class neureka.devices.AbstractBaseDevice
 
numberOfDataObjects() - Method in interface neureka.devices.Device
Note that this is not necessarily equal to Storage.numberOfStored(), because multiple tensors may share a single Data object.
numberOfOperationsWithin(List<String>) - Static method in class neureka.math.parsing.ParseUtil
 
numberOfStored() - Method in class neureka.devices.AbstractBaseDevice
 
numberOfStored() - Method in interface neureka.devices.Storage
 
NumericType<TargetType,TargetArrayType,HolderType,HolderArrayType> - Interface in neureka.dtype
This interface enables "Polymorphic" utility by defining common functionalities used for handling various numeric types.

O

objBooleansToPrimBooleans(Boolean[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
objBytesToPrimBytes(Byte[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
objCharsToPrimChars(Character[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
objDoublesToPrimDoubles(Double[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
objectsToBytes(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
 
objectsToDoubles(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
 
objectsToFloats(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
 
objectsToInts(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
 
objectsToLongs(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
 
objectsToShorts(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
 
objFloatsToPrimFloats(Float[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
objIntsToPrimInts(Integer[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
objLongsToPrimLongs(Long[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
objShortsToPrimShorts(Short[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
of(ADAction) - Static method in interface neureka.autograd.ADAction
 
of(Tensor<?>, ADAction) - Static method in interface neureka.autograd.ADAction
 
of(Tensor<?>...) - Static method in class neureka.backend.api.ExecutionCall
Use this factory method to build ExecutionCall instances in a readable fashion.
of(ImplementationReceiver) - Static method in class neureka.backend.api.ini.BackendRegistry
 
of(Supplier<V>) - Static method in class neureka.backend.api.LazyRef
 
of(Tensor<?>) - Static method in class neureka.backend.api.Result
 
of(Class<V>, V...) - Static method in interface neureka.Data
 
of(float...) - Static method in interface neureka.Data
 
of(double...) - Static method in interface neureka.Data
 
of(int...) - Static method in interface neureka.Data
 
of(long...) - Static method in interface neureka.Data
 
of(byte...) - Static method in interface neureka.Data
 
of(short...) - Static method in interface neureka.Data
 
of(boolean...) - Static method in interface neureka.Data
 
of(char...) - Static method in interface neureka.Data
 
of(String...) - Static method in interface neureka.Data
 
of(Class<T>) - Static method in class neureka.dtype.DataType
 
of(int) - Static method in class neureka.math.args.Arg.Axis
 
of(Tensor<V>) - Static method in class neureka.math.args.Arg.Derivative
 
of(int) - Static method in class neureka.math.args.Arg.DerivIdx
 
of(int[]) - Static method in class neureka.math.args.Arg.Ends
 
of(int...) - Static method in class neureka.math.args.Arg.Indices
 
of(NDConfiguration.Layout) - Static method in class neureka.math.args.Arg.Layout
 
of(int) - Static method in class neureka.math.args.Arg.MinRank
 
of(int...) - Static method in class neureka.math.args.Arg.Offset
 
of(String) - Static method in class neureka.math.args.Arg.Seed
 
of(long) - Static method in class neureka.math.args.Arg.Seed
 
of(int...) - Static method in class neureka.math.args.Arg.Shape
 
of(int...) - Static method in class neureka.math.args.Arg.Stride
 
of(Device<?>) - Static method in class neureka.math.args.Arg.TargetDevice
 
of(int) - Static method in class neureka.math.args.Arg.VarIdx
 
of(Arg<?>...) - Static method in class neureka.math.args.Args
 
of(String) - Static method in interface neureka.math.Function
This static factory method will return Function instances based on a provided mathematical String expression describing the function using 'I[0]', 'I[1]', 'I[2]'...
of(String, boolean) - Static method in interface neureka.math.Function
This static factory method will return Function instances based on a provided mathematical String expression describing the function using 'I[0]', 'I[1]', 'I[2]'...
of(String, boolean) - Static method in class neureka.math.implementations.FunctionInput
 
of(Class<V>) - Static method in interface neureka.Nda
This is the entry point to the fluent nd-array builder API for building Nda instances in a readable and type safe fashion.
of(double) - Static method in interface neureka.Nda
 
of(float...) - Static method in interface neureka.Nda
Constructs a vector of floats based on the provided array.
of(double...) - Static method in interface neureka.Nda
Constructs a vector of doubles based on the provided array.
of(byte...) - Static method in interface neureka.Nda
Constructs a vector of bytes based on the provided array.
of(int...) - Static method in interface neureka.Nda
Constructs a vector of ints based on the provided array.
of(long...) - Static method in interface neureka.Nda
Constructs a vector of longs based on the provided array.
of(short...) - Static method in interface neureka.Nda
Constructs a vector of shorts based on the provided array.
of(boolean...) - Static method in interface neureka.Nda
Constructs a vector of booleans based on the provided array.
of(T...) - Static method in interface neureka.Nda
Constructs a vector of objects based on the provided array.
of(Shape, double...) - Static method in interface neureka.Nda
Use this to construct and return a double based nd-array of the specified shape and initial values.
of(Shape, float...) - Static method in interface neureka.Nda
Use this to construct and return a float based nd-array of the specified shape and initial values.
of(Shape, byte...) - Static method in interface neureka.Nda
Use this to construct and return a byte based nd-array of the specified shape and initial values.
of(Shape, int...) - Static method in interface neureka.Nda
Use this to construct and return a int based nd-array of the specified shape and initial values.
of(Shape, long...) - Static method in interface neureka.Nda
Use this to construct and return a long based nd-array of the specified shape and initial values.
of(Shape, short...) - Static method in interface neureka.Nda
Use this to construct and return a short based nd-array of the specified shape and initial values.
of(Shape, boolean...) - Static method in interface neureka.Nda
Use this to construct and return a boolean based nd-array of the specified shape and initial values.
of(Shape, T...) - Static method in interface neureka.Nda
Use this to construct and return an object based nd-array of the specified shape and initial values.
of(Iterable<T>) - Static method in interface neureka.Nda
Constructs a vector of objects based on the provided iterable.
of(List<T>) - Static method in interface neureka.Nda
Constructs a vector of objects based on the provided list.
of(int[], int[], int[], int[], int[]) - Static method in interface neureka.ndim.config.NDConfiguration
 
of(Tensor<?>) - Static method in interface neureka.ndim.iterator.NDIterator
Use this to instantiate NDIterators optimized for the provided tensor.
of(Tensor<?>, NDIterator.NonVirtual) - Static method in interface neureka.ndim.iterator.NDIterator
Use this to instantiate NDIterators optimized for the provided tensor which may not be allowed to be a VirtualNDIterator instance.
of(NDConfiguration, NDIterator.NonVirtual) - Static method in interface neureka.ndim.iterator.NDIterator
Use this to instantiate NDIterators optimized for the provided NDConfiguration which may not be allowed to be a VirtualNDIterator instance.
of(int[], int[], int[], int[], int[]) - Static method in interface neureka.ndim.NDConstructor
 
of(NDConfiguration) - Static method in interface neureka.ndim.NDConstructor
 
of(Shape) - Static method in interface neureka.ndim.NDConstructor
 
of(int...) - Static method in interface neureka.ndim.NDConstructor
 
of(Optimization<T>) - Static method in interface neureka.optimization.Optimizer
 
of(List<? extends Number>) - Static method in interface neureka.Shape
This method is used to create a Shape instance from a list of numbers whose integer values are used to describe the shape of a nd-array.
of(Stream<? extends Number>) - Static method in interface neureka.Shape
This method is used to create a Shape instance from a stream of numbers whose integer values are used to describe the shape of a nd-array.
of(Iterable<? extends Number>) - Static method in interface neureka.Shape
This method is used to create a Shape instance from an iterable of numbers whose integer values are used to describe the shape of a nd-array.
of(int...) - Static method in interface neureka.Shape
This method is used to create a Shape instance from an array of integers.
of(Tensor<T>, char, Tensor<T>) - Static method in interface neureka.Tensor
Use this to conveniently operate on 2 tensors.
of(Tensor<T>, char, Tensor<T>, char, Tensor<T>) - Static method in interface neureka.Tensor
Use this to conveniently operate on 3 tensors.
of(String, Tensor<T>, String) - Static method in interface neureka.Tensor
Use this to conveniently operate on a tensor.
of(String, Tensor<T>, char, Tensor<T>, String) - Static method in interface neureka.Tensor
Use this to conveniently operate on 2 tensors.
of(String, Tensor<T>, String, Tensor<T>, String, Tensor<T>, String) - Static method in interface neureka.Tensor
Use this to conveniently operate on 3 tensors.
of(Object...) - Static method in interface neureka.Tensor
This static Tensor factory method tries to interpret the provided arguments to create the instance the use might wants.
of(Iterable<T>) - Static method in interface neureka.Tensor
Constructs a vector of objects based on the provided iterable.
of(List<Integer>, T) - Static method in interface neureka.Tensor
This is a convenient factory method for creating Tensor instances for values of type T based on a list of integers defining a shape made up of axes sizes as well as a scalar value of type T which will fill out the data array spanned by the provided shape information.
of(Shape, T) - Static method in interface neureka.Tensor
This is a convenient factory method for creating Tensor instances for representing items of type T.
of(List<? extends Number>, String) - Static method in interface neureka.Tensor
This factory method will create and return a Tensor instance based on a list of Number instances whose rounded values will be interpreted as the shape of this new Tensor instance and a seed which will serve as a source of pseudo randomness to generate the values for the new instance.
of(List<? extends Number>, List<V>) - Static method in interface neureka.Tensor
Creates a new Tensor instance based on a list of numbers representing the shape, and a list of values representing the value of the resulting tensor.
of(Shape, List<V>) - Static method in interface neureka.Tensor
Creates a new Tensor instance based on a shape tuple of numbers representing the nd-array shape, and a list of items representing the value of the resulting tensor.
of(List<Object>) - Static method in interface neureka.Tensor
This factory method will turn a list of values or nested lists of values into a Tensor instance with the corresponding rank and shape.
of(Class<T>, List<Object>) - Static method in interface neureka.Tensor
This factory method will turn a list of values or nested lists of values into a Tensor instance with the corresponding rank and shape and whose values are of the provided type.
of(Class<V>) - Static method in interface neureka.Tensor
This is the entry point to the fluent tensor builder API for building Tensor instances in a readable and type safe fashion.
of(double...) - Static method in interface neureka.Tensor
Constructs a vector of doubles based on the provided array.
of(double) - Static method in interface neureka.Tensor
 
of(float...) - Static method in interface neureka.Tensor
Constructs a vector of floats based on the provided array.
of(float) - Static method in interface neureka.Tensor
 
of(byte...) - Static method in interface neureka.Tensor
Constructs a vector of bytes based on the provided array.
of(byte) - Static method in interface neureka.Tensor
 
of(int...) - Static method in interface neureka.Tensor
Constructs a vector of ints based on the provided array.
of(int) - Static method in interface neureka.Tensor
 
of(long...) - Static method in interface neureka.Tensor
Constructs a vector of longs based on the provided array.
of(long) - Static method in interface neureka.Tensor
 
of(short...) - Static method in interface neureka.Tensor
Constructs a vector of shorts based on the provided array.
of(short) - Static method in interface neureka.Tensor
 
of(boolean...) - Static method in interface neureka.Tensor
Constructs a vector of booleans based on the provided array.
of(Class<V>, Shape, Arg.Seed) - Static method in interface neureka.Tensor
Use this to construct and return a seeded tensor of the specified type.
of(Shape, double) - Static method in interface neureka.Tensor
Use this to construct and return a homogeneously populated double tensor of the specified shape.
of(Shape, double[]) - Static method in interface neureka.Tensor
Use this to construct and return a double tensor of the specified shape and initial values.
of(Shape, int[]) - Static method in interface neureka.Tensor
Use this to construct and return an int tensor of the specified shape and initial values.
of(Shape, byte[]) - Static method in interface neureka.Tensor
Use this to construct and return a byte tensor of the specified shape and initial values.
of(Shape, long[]) - Static method in interface neureka.Tensor
Use this to construct and return a long tensor of the specified shape and initial values.
of(Shape, short[]) - Static method in interface neureka.Tensor
Use this to construct and return a short tensor of the specified shape and initial values.
of(Shape, float[]) - Static method in interface neureka.Tensor
Use this to construct and return a float tensor of the specified shape and initial values.
of(Shape, float) - Static method in interface neureka.Tensor
Use this to construct and return a homogeneously populated float tensor of the specified shape.
of(Shape, boolean[]) - Static method in interface neureka.Tensor
Use this to construct and return a boolean tensor of the specified shape and initial values.
of(Shape, Data<V>) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified shape and data object.
This method is typically used like this:
of(DataType<V>, Shape) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type and shape.
of(Class<V>, Shape, Object) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type, shape and data object.
of(Class<V>, List<Integer>, Object) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type, shape and data object.
of(Class<V>, Shape, Number) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type, shape and number.
of(Class<V>, List<Integer>, List<V>) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type, shape and data object.
of(Class<V>, Shape, List<V>) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type, shape and list of items.
of(DataType<V>, List<Integer>, List<V>) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type, shape and data object.
of(DataType<V>, Shape, List<V>) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type, shape and a list of items.
of(DataType<V>, Shape, Object) - Static method in interface neureka.Tensor
This factory method is among the most flexible and forgiving ways to create a Tensor instance.
of(DataType<V>, Device<N>, Shape, Object) - Static method in interface neureka.Tensor
This factory method is among the most flexible and forgiving ways to create a Tensor instance.
of(DataType<V>, NDConstructor, Data<V>) - Static method in interface neureka.Tensor
This factory method a raw tensor constructor which will not perform any type checking or data conversion on the data provided to it.
of(DataType<T>, List<Integer>, Filler<T>) - Static method in interface neureka.Tensor
This factory method allows the creation of tensors with an additional initialization lambda for filling the underlying data array with desired values.
of(DataType<T>, Shape, Filler<T>) - Static method in interface neureka.Tensor
This factory method allows the creation of tensors with an additional initialization lambda for filling the underlying data array with desired values.
of(Class<T>, Shape, Filler<T>) - Static method in interface neureka.Tensor
This factory method allows the creation of tensors with an additional initialization lambda for filling the underlying data array with desired values.
of(String, V...) - Static method in interface neureka.Tensor
This factory method allows for the creation and execution of Function instances without actually instantiating them manually, where the result will then be returned by this factory method.
of(String, List<Tensor<V>>) - Static method in interface neureka.Tensor
This factory method allows for the creation and execution of Function instances without actually instantiating them manually, where the result will then be returned by this factory method.
of(String, boolean, List<Tensor<V>>) - Static method in interface neureka.Tensor
This method takes a list of tensors and a String expression describing operations which ought to be applied to the tensors in said list.
of(String, Tensor<V>) - Static method in interface neureka.Tensor
This method takes a tensor and a String expression describing operations which ought to be applied to said tensor.
of(String, Tensor<V>...) - Static method in interface neureka.Tensor
This method takes an array of tensors and a String expression describing operations which ought to be applied to the tensors in said array.
of(String, boolean, Tensor<V>...) - Static method in interface neureka.Tensor
This method takes an array of tensors and a String expression describing operations which ought to be applied to the tensors in said array.
ofAny(Class<V>, Shape, Object) - Static method in interface neureka.Tensor
Use this to construct and return a tensor of the specified type, shape and data object.
ofBigDecimals() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(BigDecimal.class) used to build Ndas storing BigDecimals.
ofBooleans() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Boolean.class) used to build Ndas storing Booleans.
ofBytes() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Byte.class) used to build Ndas storing Bytes.
ofBytes() - Static method in interface neureka.Tensor
This is a simple convenience method which is simply calling the Tensor.of(Class) method like so: of(Byte.class).
ofChars() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Character.class) used to build Ndas storing Characters.
ofDoubles() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Double.class) used to build Ndas storing Doubles.
ofDoubles() - Static method in interface neureka.Tensor
This is a simple convenience method which is simply calling the Tensor.of(Class) method like so: of(Double.class).
ofFloats() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Float.class) used to build Ndas storing Floats.
ofFloats() - Static method in interface neureka.Tensor
This is a simple convenience method which is simply calling the Tensor.of(Class) method like so: of(Float.class).
offset() - Method in interface neureka.ndim.config.NDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in interface neureka.ndim.config.NDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
The offset is the position of a slice within the n-dimensional data array of its parent tensor.
offset() - Method in interface neureka.ndim.NDimensional
The offset is the position of a slice within the n-dimensional data array of its parent array.
ofGradient(Optimization<T>) - Static method in interface neureka.optimization.Optimizer
 
ofInts() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Integer.class) used to build Ndas storing Integers.
ofInts() - Static method in interface neureka.Tensor
This is a simple convenience method which is simply calling the Tensor.of(Class) method like so: of(Integer.class).
ofLongs() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Long.class) used to build Ndas storing Longs.
ofNumbers() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Number.class) used to build Ndas storing Numbers.
ofObjects() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Object.class) used to build Ndas storing Objects.
ofRandom(Class<V>, int...) - Static method in interface neureka.Tensor
This factory method produces a randomly populated tensor of the provided type and shape using a hard coded default seed.
ofShorts() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(Short.class) used to build Ndas storing Shorts.
ofShorts() - Static method in interface neureka.Tensor
This is a simple convenience method which is simply calling the Tensor.of(Class) method like so: of(Short.class).
ofStrings() - Static method in interface neureka.Nda
This is a shortcut method for Nda.of(String.class) used to build Ndas storing Strings.
OKAY - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
on(D) - Method in class neureka.backend.api.ExecutionCall.Builder
 
on(Device<? super V>) - Method in class neureka.fluent.building.NdaBuilder
 
on(Device<? super V>) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorOnDevice
Use this to specify the type onto which the tensor should be stored.
OpenCLDevice - Class in neureka.devices.opencl
This class models OpenCL supporting accelerator hardware like GPUs or FPGAs for storing tensors and executing operations on them.
OpenCLDevice.Query - Class in neureka.devices.opencl
 
OpenCLDevice.Type - Enum in neureka.devices.opencl
 
OpenCLPlatform - Class in neureka.devices.opencl
This class models the OpenCL concept of platforms, which refer to device vendors / or vendor OpenCL runtime drivers.
OpenCLPlatform(cl_platform_id) - Constructor for class neureka.devices.opencl.OpenCLPlatform
 
Operation - Interface in neureka.backend.api
This interface is part of the backend API, and it embodies the top layer of the 3 tier backend architecture.
OperationBuilder - Class in neureka.backend.api.template.operations
This builder class builds instances of the Operation interface.
OperationBuilder() - Constructor for class neureka.backend.api.template.operations.OperationBuilder
 
OperationBuilder.Derivation - Interface in neureka.backend.api.template.operations
 
OperationBuilder.Stringifier - Interface in neureka.backend.api.template.operations
 
operationForF32(boolean, long, long) - Static method in class neureka.backend.main.operations.linear.internal.blas.GEMM
 
operationForF64(boolean, long, long) - Static method in class neureka.backend.main.operations.linear.internal.blas.GEMM
 
operationForI32(boolean, long, long) - Static method in class neureka.backend.main.operations.linear.internal.blas.IGEMM
 
operationForI64(boolean, long, long) - Static method in class neureka.backend.main.operations.linear.internal.blas.IGEMM
 
operationName() - Method in class neureka.backend.api.template.operations.AbstractOperation
Override this if you want your operation to have a string representation with a custom prefix which is something other than the simple class name!
operator(String) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
Optimization<V> - Interface in neureka.optimization
 
optimize() - Method in class neureka.devices.opencl.utility.CLFunctionCompiler
 
optimize(Tensor<V>) - Method in class neureka.optimization.implementations.AdaGrad
 
optimize(Tensor<V>) - Method in class neureka.optimization.implementations.ADAM
 
optimize(Tensor<V>) - Method in class neureka.optimization.implementations.Momentum
 
optimize(Tensor<V>) - Method in class neureka.optimization.implementations.RMSProp
 
optimize(Tensor<V>) - Method in class neureka.optimization.implementations.SGD
 
optimize(Tensor<V>) - Method in interface neureka.optimization.Optimization
 
optimizedFunctionOf(Function, String) - Method in interface neureka.devices.Device
This method tries to allow this device to produce an optimized Function based on the provided function.
optimizedOperationOf(Function, String) - Method in interface neureka.devices.Device
This method tries to allow this device to produce an optimized Operation based on the provided function.
optimizedOperationOf(Function, String) - Method in class neureka.devices.file.FileDevice
 
optimizedOperationOf(Function, String) - Method in class neureka.devices.host.CPU
 
optimizedOperationOf(Function, String) - Method in class neureka.devices.opencl.OpenCLDevice
 
Optimizer<V> - Interface in neureka.optimization
Optimizers are tensor components which implement the Optimization (functional) interface applying various optimization algorithms to the gradients of tensors.
OptimizerFactory - Interface in neureka.optimization
 
orElse(T) - Method in interface neureka.backend.api.Call.Else
 
orElse(V) - Method in interface neureka.Nda.Item
Get the value at the targeted position or return the provided default value if the item does not exist.
orElseNull() - Method in interface neureka.Nda.Item
Get the value at the targeted position or return null if the item does not exist.
OS_MEMORY_PAGE_SIZE - Static variable in class neureka.devices.host.machine.Hardware
Practically all architectures/OS:s have a page size of 4k (one notable exception is Solaris/SPARC that have 8k)
owner() - Method in interface neureka.Data
 
owner() - Method in class neureka.devices.AbstractDeviceData
 

P

pad(int, String) - Static method in class neureka.view.NdaAsString.Util
 
pad(String, int) - Static method in class neureka.view.NdaAsString.Util
 
Parallelism - Enum in neureka.devices.host.concurrent
A set of standard levels of parallelism derived from the number of available cores and optionally capped by reserving a specified amount of memory per thread.
parallelism(IntSupplier) - Method in class neureka.devices.host.concurrent.WorkScheduler.Divider
 
PARALLELIZATION_THRESHOLD - Static variable in class neureka.devices.host.CPU
 
parse(Operation, int, boolean) - Method in class neureka.math.parsing.FunctionParser
 
parse(String, boolean) - Method in class neureka.math.parsing.FunctionParser
 
ParsedCLImplementation - Class in neureka.backend.main.implementations
 
ParsedCLImplementation(ImplementationFor<OpenCLDevice>, int, String, String, String, String, Function<KernelCode, KernelCode[]>) - Constructor for class neureka.backend.main.implementations.ParsedCLImplementation
 
parsedOperation(String, int) - Static method in class neureka.math.parsing.ParseUtil
 
ParseUtil - Class in neureka.math.parsing
Utility for parsing function expressions.
partialDerivative() - Method in interface neureka.autograd.ADAction
 
pass(Tensor<T>) - Method in class neureka.devices.opencl.KernelCaller
This method passes 1 argument to the kernel.
pass(int) - Method in class neureka.devices.opencl.KernelCaller
 
pass(int...) - Method in class neureka.devices.opencl.KernelCaller
Use this to pass an array of int values to the kernel.
pass(float...) - Method in class neureka.devices.opencl.KernelCaller
Use this to pass an array of float values to the kernel.
pass(double...) - Method in class neureka.devices.opencl.KernelCaller
 
pass(short...) - Method in class neureka.devices.opencl.KernelCaller
 
pass(long...) - Method in class neureka.devices.opencl.KernelCaller
 
pass(byte...) - Method in class neureka.devices.opencl.KernelCaller
 
pass(float) - Method in class neureka.devices.opencl.KernelCaller
 
pass(double) - Method in class neureka.devices.opencl.KernelCaller
 
pass(short) - Method in class neureka.devices.opencl.KernelCaller
 
pass(long) - Method in class neureka.devices.opencl.KernelCaller
 
pass(byte) - Method in class neureka.devices.opencl.KernelCaller
 
pass(Number) - Method in class neureka.devices.opencl.KernelCaller
 
passAllOf(Tensor<Number>) - Method in class neureka.devices.opencl.KernelCaller
This method passes 2 arguments to the kernel.
passConfOf(Tensor<Number>) - Method in class neureka.devices.opencl.KernelCaller
This method passes the ND-Configuration in the form of a flattened int array to the kernel.
passLocalFloats(long) - Method in class neureka.devices.opencl.KernelCaller
 
pendingCount() - Method in class neureka.autograd.JITProp
 
PERFECT - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
Permute - Class in neureka.backend.main.operations.other
 
Permute() - Constructor for class neureka.backend.main.operations.other.Permute
 
permute() - Method in class neureka.math.Functions
 
permute(int...) - Method in interface neureka.Nda
Returns a view of the original tensor input with its dimensions permuted.
Consider a 3-dimensional tensor x with shape (2×3×5), then calling x.permute(1, 0, 2) will return a 3-dimensional tensor of shape (3×2×5).
permute(int...) - Method in interface neureka.Tensor
Returns a view of the original tensor input with its dimensions permuted.
Consider a 3-dimensional tensor x with shape (2×3×5), then calling x.permute(1, 0, 2) will return a 3-dimensional tensor of shape (3×2×5).
Permuted1DConfiguration - Class in neureka.ndim.config.types.permuted
 
Permuted1DConfiguration(int, int, int) - Constructor for class neureka.ndim.config.types.permuted.Permuted1DConfiguration
 
Permuted2DCIterator - Class in neureka.ndim.iterator.types.permuted
 
Permuted2DCIterator(Permuted2DConfiguration) - Constructor for class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
 
Permuted2DConfiguration - Class in neureka.ndim.config.types.permuted
 
Permuted2DConfiguration(int[], int[], int[]) - Constructor for class neureka.ndim.config.types.permuted.Permuted2DConfiguration
 
Permuted3DCIterator - Class in neureka.ndim.iterator.types.permuted
 
Permuted3DCIterator(Permuted3DConfiguration) - Constructor for class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
 
Permuted3DConfiguration - Class in neureka.ndim.config.types.permuted
 
Permuted3DConfiguration(int[], int[], int[]) - Constructor for class neureka.ndim.config.types.permuted.Permuted3DConfiguration
 
PermutedNDConfiguration - Class in neureka.ndim.config.types.permuted
 
PermutedNDConfiguration(int[], int[], int[]) - Constructor for class neureka.ndim.config.types.permuted.PermutedNDConfiguration
 
plus() - Method in class neureka.math.Functions
 
plus(Tensor<V>) - Method in interface neureka.Tensor
This method will produce the addition of two tensors with the same rank (or two ranks which can be made compatible with padding ones), where the left operand is this Tensor instance and the right operand is the tensor passed to the method.
plus(V) - Method in interface neureka.Tensor
This method will create a new Tensor with the provided double scalar added to all elements of this Tensor.
plusAssign() - Method in class neureka.math.Functions
 
plusAssign(Tensor<T>) - Method in interface neureka.MutateTensor
Performs an addition of the passed tensor to this tensor.
pow() - Method in class neureka.math.Functions
 
powAssign() - Method in class neureka.math.Functions
 
Power - Class in neureka.backend.main.operations.operator
 
Power() - Constructor for class neureka.backend.main.operations.operator.Power
 
power(Tensor<V>) - Method in interface neureka.Tensor
This will produce the power of two tensors with the same rank (or two ranks which can be made compatible with padding ones), where the left operand is this Tensor instance and the right operand is the tensor passed to the method.
power(V) - Method in interface neureka.Tensor
Raises all items of this tensor to the power of the provided value.
PREDEFINED - Static variable in class neureka.devices.host.machine.Hardware
Should contain all available hardware in ascending "power" order.
prefVecWidthChar() - Method in class neureka.devices.opencl.OpenCLDevice
 
prefVecWidthDouble() - Method in class neureka.devices.opencl.OpenCLDevice
 
prefVecWidthFloat() - Method in class neureka.devices.opencl.OpenCLDevice
 
prefVecWidthInt() - Method in class neureka.devices.opencl.OpenCLDevice
 
prefVecWidthLong() - Method in class neureka.devices.opencl.OpenCLDevice
 
prefVecWidthShort() - Method in class neureka.devices.opencl.OpenCLDevice
 
prepare(ExecutionCall<? extends Device<?>>) - Method in interface neureka.backend.api.fun.ExecutionPreparation
 
prepare(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
Preparing refers to instantiating output tensors for the provided ExecutionCall.
prepare(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
 
prepareAndExecute(ExecutionCall<? extends Device<?>>, FinalExecutor) - Static method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
process(T) - Method in class neureka.common.utility.Cache
 
produceNDC(boolean) - Method in interface neureka.ndim.NDConstructor
 
Product - Class in neureka.backend.main.operations.indexer
This type of operation belongs to the same species as the Summation operation.
Product() - Constructor for class neureka.backend.main.operations.indexer.Product
 
propertyOf(Tensor<?>) - Method in interface neureka.backend.api.Call.TensorProperty
 
providesGradient() - Method in class neureka.math.implementations.FunctionInput
 
providesGradient() - Method in class neureka.math.implementations.FunctionVariable
 
put(String, OpenCLDevice.cl_ad_hoc) - Method in class neureka.devices.opencl.KernelCache
 
put(Function) - Method in class neureka.math.FunctionCache
 
putAt(Map<?, Integer>, Nda<T>) - Method in interface neureka.MutateNda
This method enables assigning a provided nd-array to be a subset/slice of this nd-array! It takes a key which is used to configure a slice sharing the same underlying data as the original nd-array.
putAt(int[], T) - Method in interface neureka.MutateNda
Use this to put a single item at a particular position within this nd-array.
putAt(int, T) - Method in interface neureka.MutateNda
Individual entries for value items in this nd-array can be set via this method.
putAt(List<?>, Nda<T>) - Method in interface neureka.MutateNda
This method enables injecting slices of nd-array to be assigned into this nd-array! It takes a key of various types which is used to configure a slice nd-array sharing the same underlying data as the original nd-array.
putAt(List<?>, T) - Method in interface neureka.MutateNda
Use this to place a single item at a particular position within this nd-array!
putAt(Map<?, Integer>, Nda<T>) - Method in interface neureka.MutateTensor
This method enables assigning a provided nd-array to be a subset/slice of this nd-array! It takes a key which is used to configure a slice sharing the same underlying data as the original nd-array.
putAt(int[], T) - Method in interface neureka.MutateTensor
Use this to put a single item at a particular position within this nd-array.
putAt(int, T) - Method in interface neureka.MutateTensor
Individual entries for value items in this nd-array can be set via this method.
putAt(List<?>, Nda<T>) - Method in interface neureka.MutateTensor
This method enables injecting slices of nd-array to be assigned into this nd-array! It takes a key of various types which is used to configure a slice nd-array sharing the same underlying data as the original nd-array.
putAt(List<?>, T) - Method in interface neureka.MutateTensor
Use this to place a single item at a particular position within this nd-array!

Q

quad() - Method in class neureka.math.Functions
 
QUADRATIC - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Quadratic - Class in neureka.backend.main.operations.functions
 
Quadratic() - Constructor for class neureka.backend.main.operations.functions.Quadratic
 
Query() - Constructor for class neureka.devices.opencl.OpenCLDevice.Query
 
query() - Static method in class neureka.devices.opencl.utility.DeviceQuery
The entry point of this program

R

random() - Method in class neureka.math.Functions
 
Randomization - Class in neureka.backend.main.operations.other
This Operation takes an optional user seed, the shape of its input tensor, and the indices of individual elements within said tensor to generate floats or doubles with a gaussian distribution where the mean is 0 and the standard deviation is 1.
Randomization() - Constructor for class neureka.backend.main.operations.other.Randomization
 
rank() - Method in interface neureka.ndim.config.NDConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
This method returns the number of axis of a nd-array / Tensor which is equal to the length of the shape of an nd-array / Tensor.
rank() - Method in interface neureka.ndim.iterator.NDIterator
 
rank() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
 
rank() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
rank() - Method in interface neureka.ndim.NDimensional
 
read(List<Object>, Function<Object, Object>) - Static method in class neureka.common.utility.ListReader
Reads the provided data and turns it into a ListReader.Result object, containing a flattened list of the data alongside its shape and data type.
readAll(boolean) - Method in interface neureka.devices.Device.Access
Use this to read the full data array of the accessed tensor.
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.F32
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.F32
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.F64
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.F64
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.I16
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.I16
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.I32
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.I32
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.I64
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.I64
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.I8
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.I8
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.UI16
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.UI16
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.UI32
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.UI32
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.UI64
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.UI64
 
readAndConvertForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.UI8
 
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.UI8
 
readAndConvertForeignDataFrom(DataInput, int) - Method in interface neureka.dtype.NumericType
This method expects the provided stream to spit out bytes which can be read as holder type elements.
readAndConvertForeignDataFrom(Iterator<T>, int) - Method in interface neureka.dtype.NumericType
This method expects the provided iterator to return elements which can be read as holder type elements.
readArray(Class<A>, int, int) - Method in interface neureka.devices.Device.Access
Use this to read an array of items from the accessed tensor by specifying a start position of the chunk of data that should be read.
readAt(int) - Method in interface neureka.devices.Device.Access
Find a particular tensor item by providing its location.
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.F32
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.F32
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.F64
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.F64
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.I16
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.I16
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.I32
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.I32
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.I64
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.I64
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.I8
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.I8
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.UI16
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.UI16
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.UI32
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.UI32
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.UI64
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.UI64
 
readForeignDataFrom(DataInput, int) - Method in class neureka.dtype.custom.UI8
 
readForeignDataFrom(Iterator<T>, int) - Method in class neureka.dtype.custom.UI8
 
readForeignDataFrom(DataInput, int) - Method in interface neureka.dtype.NumericType
This method expects the provided stream to spit out bytes which can be read as target type elements.
readForeignDataFrom(Iterator<T>, int) - Method in interface neureka.dtype.NumericType
This method expects the provided iterator to return elements which can be read as holder type elements.
readResource(String) - Method in class neureka.Neureka.Utility
Helper method which reads the file with the given name and returns the contents of this file as a String.
rearrange(int[], int[], int[]) - Method in enum neureka.ndim.config.NDConfiguration.Layout
 
rearrange(int[], int[]) - Static method in class neureka.ndim.config.NDConfiguration.Utility
 
rearrangeInputs(int...) - Method in class neureka.backend.api.Call
 
ReceiveForDevice<D extends Device<?>> - Interface in neureka.backend.api.ini
 
ReceiveForOperation<D extends Device<?>> - Interface in neureka.backend.api.ini
 
recompile() - Method in class neureka.devices.opencl.OpenCLPlatform
 
ReferenceCounter - Class in neureka.devices
 
ReferenceCounter(Consumer<ReferenceCounter.ChangeEvent>) - Constructor for class neureka.devices.ReferenceCounter
 
ReferenceCounter.ChangeEvent - Class in neureka.devices
 
ReferenceCounter.ChangeType - Enum in neureka.devices
 
register(Object, Runnable) - Method in interface neureka.devices.DeviceCleaner
 
Relation<V> - Class in neureka.framing
This class is an important tensor component responsible for managing the relationships between slices and the tensors from which they have been derived.
ReLayout - Class in neureka.backend.main.operations.other
 
ReLayout() - Constructor for class neureka.backend.main.operations.other.ReLayout
 
relayout() - Method in class neureka.math.Functions
 
RELU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
ReLU - Class in neureka.backend.main.operations.functions
 
ReLU() - Constructor for class neureka.backend.main.operations.functions.ReLU
 
relu() - Method in class neureka.math.Functions
 
relu() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
rem(int) - Method in interface neureka.Tensor
This method is synonymous to the Tensor.mod(int) method.
remove(Class<T>) - Method in class neureka.common.composition.AbstractComponentOwner
This method removes a component identified by the passed Class instance if found in the stored component collection.
remove(Class<T>) - Method in interface neureka.common.composition.ComponentOwner
Use this to remove a component of the specified component type class.
removeChild(Tensor<V>) - Method in class neureka.framing.Relation
 
replace(Object) - Method in class neureka.framing.fluent.AxisFrame
 
Replace<ValueType,ReplacementType,ReturnType> - Interface in neureka.framing.fluent
 
replace(ValueType) - Method in interface neureka.framing.fluent.Replace
 
replacer(Replace<Object, Object, NDFrame<ValueType>>) - Method in class neureka.framing.fluent.AxisFrame.Builder
 
representing(Nda<?>) - Static method in class neureka.view.NdaAsString
A builder providing multiple different configuration options for building a NdaAsString instance in a fluent way.
reset() - Method in class neureka.backend.api.BackendContext
 
reset() - Method in interface neureka.backend.api.BackendExtension
This will indirectly be called through the Neureka.reset() method, which is responsible for resetting the library settings.
reset() - Method in class neureka.backend.ocl.CLBackend
 
reset() - Method in class neureka.backend.ocl.CLSettings
 
reset() - Method in class neureka.Neureka
This method will try to reload the "library_settings.groovy" script which will re-configure the library wide Neureka.Settings instance nested inside Neureka.
Reshape - Class in neureka.backend.main.operations.other
 
Reshape() - Constructor for class neureka.backend.main.operations.other.Reshape
 
reshape() - Method in class neureka.math.Functions
 
reshape(int...) - Method in interface neureka.Nda
Returns a nd-array with the same data and number of elements as this nd-array, but with the specified shape.
reshape(int...) - Method in interface neureka.Tensor
Returns a nd-array with the same data and number of elements as this nd-array, but with the specified shape.
resolve() - Method in class neureka.fluent.slicing.AxisSliceBuilder
 
restore(Tensor<Object>) - Method in class neureka.devices.file.FileDevice
restore(Tensor<Object>) - Method in class neureka.devices.host.CPU
 
restore(Tensor<Number>) - Method in class neureka.devices.opencl.OpenCLDevice
This method assumes that the passed tensor is stored on this device instance.
restore(Tensor<V>) - Method in interface neureka.devices.Storage
 
Result - Class in neureka.backend.api
An immutable wrapper for a tensor as a result of anb Execution as well as an ADActionSupplier for providing auto-differentiation support.
RMSProp<V extends java.lang.Number> - Class in neureka.optimization.implementations
Root Mean Squared Propagation, or RMSProp, is an extension of gradient descent and the AdaGrad version of gradient descent that uses a decaying average of partial gradients in the adaptation of the step size for each parameter.
RMSProp - Static variable in interface neureka.optimization.Optimizer
 
RMSPropFactory - Class in neureka.optimization.implementations
 
RMSPropFactory() - Constructor for class neureka.optimization.implementations.RMSPropFactory
 
rqsGradient() - Method in interface neureka.Tensor
This flag will indirectly trigger the activation of the autograd / auto-differentiation system of this library! If the flag is set to 'true' and the tensor is used for computation then it will also receive gradients when the Tensor.backward() method is being called on any descendant tensor within the computation graph.
run(Runnable) - Method in class neureka.backend.api.BackendContext.Runner
Use this method to supply a lambda which will be executed in the BackendContext which produced this very BackendContext.Runner instance.
run(ExecutionCall<D>) - Method in interface neureka.backend.api.ImplementationFor
This method is the entrypoint for a concrete implementation of the algorithm to which instances of this interface belong and the device on which this is implemented.
run(ExecutionCall<D>) - Method in class neureka.backend.api.template.implementations.AbstractImplementationFor
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.broadcast.CLScalarBroadcastAddition
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.broadcast.CLScalarBroadcastDivision
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.broadcast.CLScalarBroadcastIdentity
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.broadcast.CLScalarBroadcastModulo
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.broadcast.CLScalarBroadcastMultiplication
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.broadcast.CLScalarBroadcastPower
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.broadcast.CLScalarBroadcastSubtraction
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcast
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcast
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastAddition
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastMultiplication
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.convolution.AbstractCPUConvolution
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.elementwise.CLRandomization
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWise
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.elementwise.CPUElementwiseAssignFun
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.elementwise.CPUElementwiseFunction
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.elementwise.CPURandomization
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.linear.CLDot
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.linear.CPUDot
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.matmul.CPUMatMul
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.scalar.CLScalarFunction
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.scalar.CPUScalarBroadcastFunction
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.scalar.CPUScalarFunction
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.operations.linear.internal.opencl.CLGEMM
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.operations.linear.internal.opencl.CLReduce
 
run(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.operations.linear.internal.opencl.CLSum
 
run(Tensor<Float>, OpenCLDevice) - Static method in class neureka.backend.main.operations.linear.internal.opencl.CLSum
This method compiles and executes the kernel that will return the sum of the elements in the in tensor.
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.operations.other.internal.CPUReduce
 
run(ExecutionCall<CPU>) - Method in class neureka.backend.main.operations.other.internal.CPUSum
 
runAndGet(Supplier<T>) - Method in class neureka.backend.api.BackendContext.Runner
Use this method to supply a lambda which will be executed in the BackendContext which produced this very BackendContext.Runner instance.
runner() - Method in class neureka.backend.api.BackendContext
A BackendContext.Runner wraps both the called context as well as the context of the caller in order to perform temporary context switching during the execution of lambdas passed to the BackendContext.Runner.
running(Operation) - Method in class neureka.backend.api.ExecutionCall.Builder
 

S

scalar(V) - Method in class neureka.fluent.building.NdaBuilder
 
scalar(V) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVector
This method created and return a scalar Tensor instance which wraps the provided value.
scalar(V) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorTensor
This method created and return a scalar Tensor instance which wraps the provided value.
ScalarAbsolute - Class in neureka.backend.main.implementations.fun
 
ScalarAbsolute() - Constructor for class neureka.backend.main.implementations.fun.ScalarAbsolute
 
ScalarAlgorithm - Class in neureka.backend.main.algorithms
 
ScalarAlgorithm() - Constructor for class neureka.backend.main.algorithms.ScalarAlgorithm
 
ScalarBroadcast - Class in neureka.backend.main.algorithms
 
ScalarBroadcast(ScalarFun) - Constructor for class neureka.backend.main.algorithms.ScalarBroadcast
 
ScalarCbrt - Class in neureka.backend.main.implementations.fun
 
ScalarCbrt() - Constructor for class neureka.backend.main.implementations.fun.ScalarCbrt
 
ScalarCosinus - Class in neureka.backend.main.implementations.fun
 
ScalarCosinus() - Constructor for class neureka.backend.main.implementations.fun.ScalarCosinus
 
ScalarExp - Class in neureka.backend.main.implementations.fun
 
ScalarExp() - Constructor for class neureka.backend.main.implementations.fun.ScalarExp
 
ScalarFun - Interface in neureka.backend.main.implementations.fun.api
 
ScalarGaSU - Class in neureka.backend.main.implementations.fun
The Self Gated ScalarSoftsign Unit is based on the ScalarSoftsign function (a computationally cheap non-exponential quasi ScalarTanh) making it a polynomially based version of the ScalarGaTU function which is itself based on the ScalarTanh function.
ScalarGaSU() - Constructor for class neureka.backend.main.implementations.fun.ScalarGaSU
 
ScalarGaTU - Class in neureka.backend.main.implementations.fun
The Self Gated ScalarTanh Unit is based on the ScalarTanh making it an exponentiation based version of the ScalarGaSU function which is itself based on the ScalarSoftsign function (a computationally cheap non-exponential quasi ScalarTanh).
ScalarGaTU() - Constructor for class neureka.backend.main.implementations.fun.ScalarGaTU
 
ScalarGaussian - Class in neureka.backend.main.implementations.fun
 
ScalarGaussian() - Constructor for class neureka.backend.main.implementations.fun.ScalarGaussian
 
ScalarGaussianFast - Class in neureka.backend.main.implementations.fun
 
ScalarGaussianFast() - Constructor for class neureka.backend.main.implementations.fun.ScalarGaussianFast
 
ScalarGeLU - Class in neureka.backend.main.implementations.fun
The GELU activation function is based on the standard Gaussian cumulative distribution function and is defined as x Φ( x ) and implemented as x * sigmoid(x * 1.702).
ScalarGeLU() - Constructor for class neureka.backend.main.implementations.fun.ScalarGeLU
 
ScalarIdentity - Class in neureka.backend.main.implementations.fun
 
ScalarIdentity() - Constructor for class neureka.backend.main.implementations.fun.ScalarIdentity
 
ScalarLog10 - Class in neureka.backend.main.implementations.fun
 
ScalarLog10() - Constructor for class neureka.backend.main.implementations.fun.ScalarLog10
 
ScalarLogarithm - Class in neureka.backend.main.implementations.fun
 
ScalarLogarithm() - Constructor for class neureka.backend.main.implementations.fun.ScalarLogarithm
 
ScalarQuadratic - Class in neureka.backend.main.implementations.fun
 
ScalarQuadratic() - Constructor for class neureka.backend.main.implementations.fun.ScalarQuadratic
 
ScalarReLU - Class in neureka.backend.main.implementations.fun
 
ScalarReLU() - Constructor for class neureka.backend.main.implementations.fun.ScalarReLU
 
ScalarSeLU - Class in neureka.backend.main.implementations.fun
The Scaled Exponential Linear Unit, or SELU, is an activation function that induces self-normalizing properties.
ScalarSeLU() - Constructor for class neureka.backend.main.implementations.fun.ScalarSeLU
 
ScalarSigmoid - Class in neureka.backend.main.implementations.fun
 
ScalarSigmoid() - Constructor for class neureka.backend.main.implementations.fun.ScalarSigmoid
 
ScalarSiLU - Class in neureka.backend.main.implementations.fun
The SiLu activation function, also known as the swish function, is defined as x * sigmoid(x).
ScalarSiLU() - Constructor for class neureka.backend.main.implementations.fun.ScalarSiLU
 
ScalarSinus - Class in neureka.backend.main.implementations.fun
 
ScalarSinus() - Constructor for class neureka.backend.main.implementations.fun.ScalarSinus
 
ScalarSoftplus - Class in neureka.backend.main.implementations.fun
SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.
ScalarSoftplus() - Constructor for class neureka.backend.main.implementations.fun.ScalarSoftplus
 
ScalarSoftsign - Class in neureka.backend.main.implementations.fun
The softsign function, defined as x / ( 1 + Math.abs( x ) ), is a computationally cheap 0 centered activation function which rescales the inputs between -1 and 1, very much like the ScalarTanh function.
ScalarSoftsign() - Constructor for class neureka.backend.main.implementations.fun.ScalarSoftsign
 
ScalarSqrt - Class in neureka.backend.main.implementations.fun
 
ScalarSqrt() - Constructor for class neureka.backend.main.implementations.fun.ScalarSqrt
 
ScalarSumAlgorithm - Class in neureka.backend.main.algorithms
 
ScalarSumAlgorithm() - Constructor for class neureka.backend.main.algorithms.ScalarSumAlgorithm
 
ScalarTanh - Class in neureka.backend.main.implementations.fun
 
ScalarTanh() - Constructor for class neureka.backend.main.implementations.fun.ScalarTanh
 
ScalarTanhFast - Class in neureka.backend.main.implementations.fun
 
ScalarTanhFast() - Constructor for class neureka.backend.main.implementations.fun.ScalarTanhFast
 
SELU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
selu(double) - Static method in class neureka.backend.main.implementations.fun.ScalarSeLU
 
SeLU - Class in neureka.backend.main.operations.functions
The Scaled Exponential Linear Unit, or SELU, is an activation functions that induce self-normalizing properties.
SeLU() - Constructor for class neureka.backend.main.operations.functions.SeLU
 
selu() - Method in class neureka.math.Functions
The Scaled Exponential Linear Unit, or SELU, is an activation functions that induce self-normalizing properties.
sequential(int, CPU.RangeWorkload) - Method in class neureka.devices.host.CPU.JVMExecutor
This method will simply execute the provided CPU.RangeWorkload lambda sequentially with 0 as the start index and workloadSize as the exclusive range.
set(BackendExtension) - Method in class neureka.backend.api.BackendContext
Registers the provided BackendExtension instance which can then be accessed via BackendContext.find(Class).
set(Class<? extends Operation>, Class<? extends A>, Function<LoadingContext, ImplementationFor<D>>) - Method in interface neureka.backend.api.ini.ReceiveForDevice
 
set(Class<? extends DeviceAlgorithm>, Function<LoadingContext, ImplementationFor<D>>) - Method in interface neureka.backend.api.ini.ReceiveForOperation
 
set(T) - Method in class neureka.common.composition.AbstractComponentOwner
This methods stores the passed component inside the component collection of this class...
set(T) - Method in interface neureka.common.composition.ComponentOwner
Use this to set a component.
Set<V> - Interface in neureka.framing.fluent
 
set(int) - Method in interface neureka.framing.fluent.Set
 
set(V) - Method in interface neureka.MutateNda.Item
Set the value at the targeted position.
set(int[], T) - Method in interface neureka.MutateNda
Use this to place a single item at a particular position within this nd-array!
set(int, int, T) - Method in interface neureka.MutateNda
 
set(int, int, int, T) - Method in interface neureka.MutateNda
 
set(int, T) - Method in interface neureka.MutateNda
Individual entries for value items in this nd-array can be set via this method.
set(int[], T) - Method in interface neureka.MutateTensor
Use this to place a single item at a particular position within this nd-array!
set(int, int, T) - Method in interface neureka.MutateTensor
set(int, int, int, T) - Method in interface neureka.MutateTensor
set(int, T) - Method in interface neureka.MutateTensor
Individual entries for value items in this nd-array can be set via this method.
set(int, int) - Method in interface neureka.ndim.iterator.NDIterator
 
set(int[]) - Method in interface neureka.ndim.iterator.NDIterator
 
set(int, int) - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
set(int[]) - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
set(int, int) - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
set(int[]) - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
set(int, int) - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
set(int[]) - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
set(int, int) - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
set(int[]) - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
set(int, int) - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
set(int[]) - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
set(int, int) - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
set(int[]) - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
set(int, int) - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
set(int[]) - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
set(int, int) - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
set(int[]) - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
set(int, int) - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
 
set(int[]) - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
 
set(int, int) - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
set(int[]) - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
set(Neureka) - Static method in class neureka.Neureka
Neureka is a thread local singleton.
set(OptimizerFactory) - Method in interface neureka.Tensor
Configures an Optimizer for this tensor based on the given OptimizerFactory which will be used to create a new Optimizer instance specific to this tensor.
setAlgorithm(Class<T>, T) - Method in interface neureka.backend.api.Operation
Operation implementations embody a component system hosting unique Algorithm instances.
setAlgorithm(T) - Method in interface neureka.backend.api.Operation
 
setAlgorithm(Class<T>, T) - Method in class neureka.backend.api.template.operations.AbstractOperation
Operation implementations embody a component system hosting unique Algorithm instances.
setAutoConvertToFloat(boolean) - Method in class neureka.backend.ocl.CLSettings
 
setAutogradModeFor(ADSupportPredicate) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
A ADSupportPredicate lambda checks what kind of auto differentiation mode an Algorithm supports for a given ExecutionCall.
setAutogradModeFor(ADSupportPredicate) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
A ADSupportPredicate lambda checks what kind of auto differentiation mode an Algorithm supports for a given ExecutionCall.
setBackend(BackendContext) - Method in class neureka.Neureka
Use this method to attach a backend context (for operations) to this thread local library context.
setCallPreparation(ExecutionPreparation) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
An Algorithm will produce a Result when executing an ExecutionCall.
setCellSize(int) - Method in class neureka.view.NDPrintSettings
A cell size refers to the number of characters reserved to the String representation of a single element.
setData(Data<T>) - Method in interface neureka.MutateTensor
At the heart of every tensor is the Data object, which holds the actual data array, a sequence of values of the same type.
setDataAt(int, T) - Method in interface neureka.MutateTensor
A tensor ought to have some way to selectively modify its underlying data array.
setDefaultDataTypeClass(Class<?>) - Method in class neureka.Neureka.Settings.DType
The default data type is not relevant most of the time.
setDerivation(OperationBuilder.Derivation) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
setExecution(Execution) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
 
setExecution(Execution) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
 
setGradientApplyRequested(boolean) - Method in interface neureka.Tensor
This flag works alongside two autograd features which can be enabled inside the library settings.
setHasDerivatives(boolean) - Method in class neureka.view.NDPrintSettings
 
setHasGradient(boolean) - Method in class neureka.view.NDPrintSettings
 
setHasRecursiveGraph(boolean) - Method in class neureka.view.NDPrintSettings
 
setHasShape(boolean) - Method in class neureka.view.NDPrintSettings
 
setHasSlimNumbers(boolean) - Method in class neureka.view.NDPrintSettings
 
setHasValue(boolean) - Method in class neureka.view.NDPrintSettings
 
setImplementationFor(Class<D>, I) - Method in interface neureka.backend.api.DeviceAlgorithm
Implementations of the DeviceAlgorithm interface ought to express a compositional design pattern.
setImplementationFor(Class<D>, E) - Method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
setIndent(String) - Method in class neureka.view.NDPrintSettings
 
setIndex(int) - Method in interface neureka.framing.fluent.AxisFrame.Set
 
setIsApplyingGradientWhenRequested(boolean) - Method in class neureka.Neureka.Settings.AutoGrad
Gradients will only be applied if requested.
setIsApplyingGradientWhenTensorIsUsed(boolean) - Method in class neureka.Neureka.Settings.AutoGrad
Gradients will automatically be applied (or JITed) to tensors as soon as they are being used for calculation (GraphNode instantiation).
setIsAutoConvertingExternalDataToJVMTypes(boolean) - Method in class neureka.Neureka.Settings.DType
This flag will determine if foreign data types will be converted into the next best fit (in terms of bits) or if it should be converted into something that does not mess with the representation of the data.
setIsCellBound(boolean) - Method in class neureka.view.NDPrintSettings
 
setIsDeletingIntermediateTensors(boolean) - Method in class neureka.Neureka.Settings.Debug
Function instances will produce hidden intermediate results when executing an array of inputs.
setIsIntermediate(boolean) - Method in interface neureka.MutateTensor
Intermediate tensors are internal non-user tensors which may be eligible for deletion when further consumed by a Function.
setIsKeepingDerivativeTargetPayloads(boolean) - Method in class neureka.Neureka.Settings.Debug
Every derivative is calculated with respect to some graph node.
setIsLegacy(boolean) - Method in class neureka.view.NDPrintSettings
This flag determines the usage of bracket types, where "[1x3]:(1, 2, 3)" would be the legacy version of "(1x3):[1, 2, 3]".
setIsLocked(boolean) - Method in class neureka.Neureka.Settings
Can be used to lock or unlock the settings of the current thread-local Neureka instance.
setIsMultiline(boolean) - Method in class neureka.view.NDPrintSettings
 
setIsOnlyUsingDefaultNDConfiguration(boolean) - Method in class neureka.Neureka.Settings.NDim
Setting this flag determines which NDConfiguration implementations should be used for nd-arrays/tensors.
setIsPreventingInlineOperations(boolean) - Method in class neureka.Neureka.Settings.AutoGrad
Inline operations are operations where the data of a tensor passed into an operation is being modified.
setIsRetainingPendingErrorForJITProp(boolean) - Method in class neureka.Neureka.Settings.AutoGrad
This flag enables an optimization technique which only propagates error values to gradients if needed by a tensor (the tensor is used again) and otherwise accumulate them at divergent differentiation paths within the computation graph.
If the flag is set to true
then error values will accumulate at such junction nodes.
setIsScientific(boolean) - Method in class neureka.view.NDPrintSettings
 
setIsSuitableFor(SuitabilityPredicate) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
The SuitabilityPredicate received by this method checks if a given instance of an ExecutionCall is suitable to be executed in ImplementationFor instances residing in this Algorithm as components.
setIsSuitableFor(SuitabilityPredicate) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
The SuitabilityPredicate received by this method checks if a given instance of an ExecutionCall is suitable to be executed in ImplementationFor instances residing in this Algorithm as components.
setIsVirtual(boolean) - Method in interface neureka.MutateTensor
Virtualizing is the opposite to actualizing a tensor.
setItemAt(int, T) - Method in interface neureka.MutateNda
An NDArray implementation ought to have some way to selectively modify its underlying value.
setItemAt(int, T) - Method in interface neureka.MutateTensor
An NDArray implementation ought to have some way to selectively modify its underlying value.
setItems(Object) - Method in interface neureka.MutateNda
This method will receive an object an try to interpret it or its contents to be set as value for this nd-array.
setItems(Object) - Method in interface neureka.MutateTensor
This method will receive an object an try to interpret it or its contents to be set as value for this nd-array.
setNDConf(NDConfiguration) - Method in interface neureka.MutateTensor
This method sets the NDConfiguration of this NDArray.
setPostfix(String) - Method in class neureka.view.NDPrintSettings
 
setPrefix(String) - Method in class neureka.view.NDPrintSettings
 
setRowLimit(int) - Method in class neureka.view.NDPrintSettings
Very large tensors with a rank larger than 1 might take a lot of vertical space when converted to a String.
setRqsGradient(boolean) - Method in interface neureka.Tensor
Setting this flag to true will tell the autograd system to accumulate gradients at this tensor.
setSupplyADActionFor(ADActionSupplier) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
This method receives a ADActionSupplier which will supply ADAction instances which can perform backward and forward auto differentiation.
setter(At<Object, AxisFrame.Set<ValueType>>) - Method in class neureka.framing.fluent.AxisFrame.Builder
 
settings() - Method in class neureka.Neureka
 
settings(Object) - Method in class neureka.Neureka
This allows you to configure Neureka using a Groovy DSL.
SettingsLoader - Class in neureka.common.utility
This class is a helper class for Neureka instances (Thread local singletons).
SGD<V> - Class in neureka.optimization.implementations
Stochastic Gradient Descent is an iterative optimization technique that uses the gradient of a weight variable to adjust said variable, in order to reduce the error used to calculate said gradient.
SGD - Static variable in interface neureka.optimization.Optimizer
 
SGDFactory - Class in neureka.optimization.implementations
 
SGDFactory() - Constructor for class neureka.optimization.implementations.SGDFactory
 
shallowClone() - Method in interface neureka.Tensor
 
shallowCopy() - Method in interface neureka.Nda
This creates a copy where the underlying data is still the same.
shallowCopy() - Method in interface neureka.Tensor
This creates a copy where the underlying data is still the same.
shape() - Method in interface neureka.ndim.config.NDConfiguration
This method returns an array of axis sizes.
shape(int) - Method in interface neureka.ndim.config.NDConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
This method receives an axis index and return the size of the axis.
shape() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
This method returns an array of axis sizes.
shape(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
This method receives an axis index and return the size of the axis.
shape(int) - Method in interface neureka.ndim.iterator.NDIterator
 
shape() - Method in interface neureka.ndim.iterator.NDIterator
 
shape(int) - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
shape() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
shape(int) - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
shape() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 
shape() - Method in interface neureka.ndim.NDimensional
 
shape(int) - Method in interface neureka.ndim.NDimensional
This method receives an axis index and return the size of the targeted axis / dimension.
Shape - Interface in neureka
Basically a tuple of integers which is used to describe the shape of an array.
shaped(int...) - Static method in interface neureka.Nda
Returns a Collector that accumulates the input elements into a new Nda with the specified shape.
shaped(int...) - Static method in interface neureka.Tensor
Returns a Collector that accumulates the input elements into a new Tensor with the specified shape.
shaped(Shape) - Static method in interface neureka.Tensor
Returns a Collector that accumulates the input elements into a new Tensor with the specified shape.
shapeOfCon(int[], int[]) - Static method in class neureka.backend.main.operations.ConvUtil
 
shapeString(int[]) - Static method in class neureka.ndim.NDUtil
 
shortToBigInteger(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
shortToByte(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
shortToDouble(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
shortToFloat(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
shortToInt(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
shortToLong(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
 
sig(double) - Static method in class neureka.backend.main.implementations.fun.ScalarSigmoid
 
sig() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
SIGMOID - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Sigmoid - Class in neureka.backend.main.operations.functions
 
Sigmoid() - Constructor for class neureka.backend.main.operations.functions.Sigmoid
 
sigmoid() - Method in class neureka.math.Functions
 
sigmoid() - Method in interface neureka.Tensor
 
signed() - Method in class neureka.dtype.custom.F32
 
signed() - Method in class neureka.dtype.custom.F64
 
signed() - Method in class neureka.dtype.custom.I16
 
signed() - Method in class neureka.dtype.custom.I32
 
signed() - Method in class neureka.dtype.custom.I64
 
signed() - Method in class neureka.dtype.custom.I8
 
signed() - Method in class neureka.dtype.custom.UI16
 
signed() - Method in class neureka.dtype.custom.UI32
 
signed() - Method in class neureka.dtype.custom.UI64
 
signed() - Method in class neureka.dtype.custom.UI8
 
signed() - Method in interface neureka.dtype.NumericType
This boolean value tells if the data-type represented by concrete instances of implementations of this interface is signed!
SILU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
silu(double) - Static method in class neureka.backend.main.implementations.fun.ScalarSiLU
 
SiLU - Class in neureka.backend.main.operations.functions
The SiLu activation function, also known as the swish function, is defined as x * sigmoid(x).
SiLU() - Constructor for class neureka.backend.main.operations.functions.SiLU
 
silu() - Method in class neureka.math.Functions
The SiLu activation function, also known as the swish function, is defined as x * sigmoid(x).
similarity(String, String) - Static method in class neureka.math.parsing.ParseUtil
This method estimates the similarity between 2 provided String instances.
Simple0DConfiguration - Class in neureka.ndim.config.types.simple
 
Simple1DCIterator - Class in neureka.ndim.iterator.types.simple
 
Simple1DCIterator(Simple1DConfiguration) - Constructor for class neureka.ndim.iterator.types.simple.Simple1DCIterator
 
Simple1DConfiguration - Class in neureka.ndim.config.types.simple
 
Simple1DConfiguration(int, int) - Constructor for class neureka.ndim.config.types.simple.Simple1DConfiguration
 
Simple2DCIterator - Class in neureka.ndim.iterator.types.simple
 
Simple2DCIterator(Simple2DConfiguration) - Constructor for class neureka.ndim.iterator.types.simple.Simple2DCIterator
 
Simple2DConfiguration - Class in neureka.ndim.config.types.simple
 
Simple2DConfiguration(int[], int[]) - Constructor for class neureka.ndim.config.types.simple.Simple2DConfiguration
 
Simple3DCIterator - Class in neureka.ndim.iterator.types.simple
 
Simple3DCIterator(Simple3DConfiguration) - Constructor for class neureka.ndim.iterator.types.simple.Simple3DCIterator
 
Simple3DConfiguration - Class in neureka.ndim.config.types.simple
 
Simple3DConfiguration(int[], int[]) - Constructor for class neureka.ndim.config.types.simple.Simple3DConfiguration
 
SimpleCLImplementation - Class in neureka.backend.main.implementations
 
SimpleCLImplementation(ImplementationFor<OpenCLDevice>, int, String, String) - Constructor for class neureka.backend.main.implementations.SimpleCLImplementation
 
SimpleNDConfiguration - Class in neureka.ndim.config.types.simple
 
SimpleNDConfiguration(int[], int[]) - Constructor for class neureka.ndim.config.types.simple.SimpleNDConfiguration
 
SimpleReshapeView - Class in neureka.ndim.config.types.views
 
SimpleReshapeView(int[], NDConfiguration) - Constructor for class neureka.ndim.config.types.views.SimpleReshapeView
 
sin() - Method in class neureka.math.Functions
 
sin() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
singleFPConfig() - Method in class neureka.devices.opencl.OpenCLDevice
 
SINUS - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Sinus - Class in neureka.backend.main.operations.functions
 
Sinus() - Constructor for class neureka.backend.main.operations.functions.Sinus
 
size() - Method in class neureka.autograd.GraphNode
This is the number of AD-actions stored inside this node.
size() - Method in class neureka.backend.api.BackendContext
 
size() - Method in class neureka.common.utility.Cache
 
size() - Method in interface neureka.ndim.config.NDConfiguration
 
size() - Method in interface neureka.ndim.NDimensional
 
size() - Method in interface neureka.Shape
 
sizeOfShape(int[]) - Static method in class neureka.ndim.config.NDConfiguration.Utility
 
Slice - Class in neureka.backend.main.operations.other
 
Slice() - Constructor for class neureka.backend.main.operations.other.Slice
 
slice(Object[], Tensor<ValType>) - Static method in class neureka.fluent.slicing.SmartSlicer
 
slice() - Method in interface neureka.Nda
This method returns a SliceBuilder instance exposing a simple builder API which enables the configuration of a slice of the current nd-array via method chaining.
slice(int, int) - Method in interface neureka.Shape
 
slice(int) - Method in interface neureka.Shape
 
slice() - Method in interface neureka.Tensor
This method returns a SliceBuilder instance exposing a simple builder API which enables the configuration of a slice of the current nd-array via method chaining.
SliceBuilder<V> - Class in neureka.fluent.slicing
This class is the heart of the slice builder API, collecting range configurations by exposing an API consisting of multiple interfaces which form a call state transition graph.
SliceBuilder(Tensor<V>) - Constructor for class neureka.fluent.slicing.SliceBuilder
An instance of a slice builder does not perform the actual slicing itself! Instead, it merely serves as a collector of slice configuration data.
sliceCount() - Method in interface neureka.Nda
This method returns the number of slices which have been created from this nd-array.
sliceCount() - Method in interface neureka.Tensor
This method returns the number of slices which have been created from this nd-array.
Sliced0DConfiguration - Class in neureka.ndim.config.types.sliced
 
Sliced0DConfiguration(int, int) - Constructor for class neureka.ndim.config.types.sliced.Sliced0DConfiguration
 
Sliced1DCIterator - Class in neureka.ndim.iterator.types.sliced
 
Sliced1DCIterator(Sliced1DConfiguration) - Constructor for class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
 
Sliced1DConfiguration - Class in neureka.ndim.config.types.sliced
 
Sliced1DConfiguration(int, int, int, int, int) - Constructor for class neureka.ndim.config.types.sliced.Sliced1DConfiguration
 
Sliced2DCIterator - Class in neureka.ndim.iterator.types.sliced
 
Sliced2DCIterator(Sliced2DConfiguration) - Constructor for class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
 
Sliced2DConfiguration - Class in neureka.ndim.config.types.sliced
 
Sliced2DConfiguration(int[], int[], int[], int[], int[]) - Constructor for class neureka.ndim.config.types.sliced.Sliced2DConfiguration
 
Sliced3DCIterator - Class in neureka.ndim.iterator.types.sliced
 
Sliced3DCIterator(Sliced3DConfiguration) - Constructor for class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
 
Sliced3DConfiguration - Class in neureka.ndim.config.types.sliced
 
Sliced3DConfiguration(int[], int[], int[], int[], int[]) - Constructor for class neureka.ndim.config.types.sliced.Sliced3DConfiguration
 
SlicedNDConfiguration - Class in neureka.ndim.config.types.sliced
 
SlicedNDConfiguration(int[], int[], int[], int[], int[]) - Constructor for class neureka.ndim.config.types.sliced.SlicedNDConfiguration
 
SlicedNDIterator - Class in neureka.ndim.iterator.types.sliced
 
SlicedNDIterator(NDConfiguration) - Constructor for class neureka.ndim.iterator.types.sliced.SlicedNDIterator
 
SmartSlicer - Class in neureka.fluent.slicing
This class is responsible for receiving any input and trying to interpret it so that a slice can be formed.
SmartSlicer() - Constructor for class neureka.fluent.slicing.SmartSlicer
 
softmax() - Method in interface neureka.Tensor
 
softmax(int) - Method in interface neureka.Tensor
 
softmax(int...) - Method in interface neureka.Tensor
Calculates the softmax function along the specified axes.
SOFTPLUS - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Softplus - Class in neureka.backend.main.operations.functions
SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.
Softplus() - Constructor for class neureka.backend.main.operations.functions.Softplus
 
softplus() - Method in class neureka.math.Functions
SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.
softplus() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
SOFTSIGN - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
softsign(double) - Static method in class neureka.backend.main.implementations.fun.ScalarSoftsign
 
softsign(float) - Static method in class neureka.backend.main.implementations.fun.ScalarSoftsign
 
Softsign - Class in neureka.backend.main.operations.functions
The softsign function, defined as x / ( 1 + Math.abs( x ) ), is a computationally cheap 0 centered activation function which rescales the inputs between -1 and 1, very much like the Tanh function.
Softsign() - Constructor for class neureka.backend.main.operations.functions.Softsign
 
softsign() - Method in class neureka.math.Functions
The softsign function, defined as x / ( 1 + Math.abs( x ) ), is a computationally cheap 0 centered activation function which rescales the inputs between -1 and 1, very much like the Tanh function.
spaces(int) - Static method in class neureka.view.NdaAsString.Util
 
spread() - Method in interface neureka.ndim.config.NDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in interface neureka.ndim.config.NDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
The spread is the access step size of a slice within the n-dimensional data array of its parent tensor.
spread() - Method in interface neureka.ndim.NDimensional
 
SQRT - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
Sqrt - Class in neureka.backend.main.operations.functions
 
Sqrt() - Constructor for class neureka.backend.main.operations.functions.Sqrt
 
sqrt() - Method in class neureka.math.Functions
 
sqrt() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
StaticKernelSource - Interface in neureka.devices.opencl
 
step(double) - Method in class neureka.fluent.building.NdaBuilder
 
Step<V> - Interface in neureka.fluent.building.states
This interface defines the last step in the call transition graph of the fluent builder API when building a Tensor instance populated based on the values within a defined range.
step(double) - Method in interface neureka.fluent.building.states.Step
This is the last step in the call transition graph of the fluent builder API when building a Tensor instance populated based on the values within a defined range.
step(double) - Method in interface neureka.fluent.building.states.StepForTensor
This is the last step in the call transition graph of the fluent builder API when building a Tensor instance populated based on the values within a defined range.
step(int) - Method in class neureka.fluent.slicing.AxisSliceBuilder
This method returns an instance of this very AxisSliceBuilder instance disguised by the AxisOrGet interface.
step(int) - Method in interface neureka.fluent.slicing.states.StepsOrAxisOrGet
This method allows one to specify a step size within the slice range previously specified for the currently sliced axis.
step(int) - Method in interface neureka.fluent.slicing.states.StepsOrAxisOrGetTensor
This method allows one to specify a step size within the slice range previously specified for the currently sliced axis.
StepForTensor<V> - Interface in neureka.fluent.building.states
 
StepsOrAxisOrGet<V> - Interface in neureka.fluent.slicing.states
This interface extends the AxisOrGet interface which provides the option to either continue slicing another axis or simply trigger the creation and return of a slice instance based on the already provided slice configuration.
StepsOrAxisOrGetTensor<V> - Interface in neureka.fluent.slicing.states
 
Storage<V> - Interface in neureka.devices
This is an abstract interface which simply describes "a thing that stores tensors".
store(Tensor<T>) - Method in class neureka.devices.AbstractDevice
Implementations of this method ought to store the data of the tensor in whatever formant suites the underlying implementation and or final type.
store(Tensor<T>) - Method in class neureka.devices.file.CSVHandle
 
store(Tensor<T>) - Method in class neureka.devices.file.FileDevice
Implementations of this method ought to store the data of the tensor in whatever formant suites the underlying implementation and or final type.
store(Tensor<T>, String) - Method in class neureka.devices.file.FileDevice
Stores the given tensor in the file system with the given filename.
store(Tensor<T>, String, Map<String, Object>) - Method in class neureka.devices.file.FileDevice
Stores the given tensor in the file system with the given filename.
store(Tensor<T>) - Method in class neureka.devices.file.IDXHandle
 
store(Tensor<T>) - Method in class neureka.devices.host.CPU
 
store(Tensor<T>) - Method in interface neureka.devices.Storage
Implementations of this method ought to store the data of the tensor in whatever formant suites the underlying implementation and or final type.
stream() - Method in interface neureka.Nda
 
stream() - Method in interface neureka.Shape
 
strides() - Method in interface neureka.ndim.config.NDConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in interface neureka.ndim.config.NDConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
The array returned by this method is used to translate an array of axis indices to a single ata array index.
strides(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
This method receives an axis index and returns the translation value for the targeted axis.
strides() - Method in interface neureka.ndim.NDimensional
 
stringifier(OperationBuilder.Stringifier) - Method in class neureka.backend.api.template.operations.OperationBuilder
 
stringify(String[]) - Method in interface neureka.backend.api.Operation
 
stringify(String[]) - Method in class neureka.backend.api.template.operations.AbstractOperation
stringify(String[]) - Method in interface neureka.backend.api.template.operations.OperationBuilder.Stringifier
 
stringify(String[]) - Method in class neureka.backend.main.operations.linear.XConvLeft
 
stringify(String[]) - Method in class neureka.backend.main.operations.linear.XConvRight
 
stringify(String[]) - Method in class neureka.backend.main.operations.other.AssignLeft
 
stringify(String[]) - Method in class neureka.backend.main.operations.other.Permute
 
submit(int, CPU.IndexedWorkload) - Method in class neureka.devices.host.concurrent.WorkScheduler.Divider
 
Subtraction - Class in neureka.backend.main.operations.operator
 
Subtraction() - Constructor for class neureka.backend.main.operations.operator.Subtraction
 
suitabilityIfValid(float) - Method in class neureka.backend.api.Call.Validator
 
SuitabilityPredicate - Interface in neureka.backend.api.fun
The SuitabilityPredicate checks if a given instance of an ExecutionCall is suitable to be executed in ImplementationFor residing in this Algorithm as components.
Sum - Class in neureka.backend.main.operations.other
 
Sum() - Constructor for class neureka.backend.main.operations.other.Sum
 
sum() - Method in class neureka.math.Functions
 
sum() - Method in interface neureka.Tensor
Calculate the sum value of all values within this tensor and returns it in the form of a scalar tensor.
sum(int) - Method in interface neureka.Tensor
Calculate the sum value of all values within this tensor along the specified axis and returns it in the form of a tensor.
sum(int...) - Method in interface neureka.Tensor
Calculate the sum value of all values within this tensor along the specified axes and returns it in the form of a tensor.
SumAlgorithm - Class in neureka.backend.main.algorithms
 
SumAlgorithm() - Constructor for class neureka.backend.main.algorithms.SumAlgorithm
 
Summation - Class in neureka.backend.main.operations.indexer
This type of operation belongs to the same species as the Product operation.
Summation() - Constructor for class neureka.backend.main.operations.indexer.Summation
 
supplyADActionFor(Function, ExecutionCall<? extends Device<?>>) - Method in interface neureka.backend.api.fun.ADActionSupplier
This method ought to return a new instance if the ADAction class responsible for performing automatic differentiation both for forward and backward mode differentiation.
supplyADActionFor(Function, ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
 
supports(Class<T>) - Method in interface neureka.backend.api.Operation
 
supports(Class<T>) - Method in class neureka.backend.api.template.operations.AbstractOperation
 
supportsAlgorithm(Class<T>) - Method in interface neureka.backend.api.Operation
This method checks if this Operation contains an instance of the Algorithm implementation specified via its type class.
supportsAlgorithm(Class<T>) - Method in class neureka.backend.api.template.operations.AbstractOperation
This method checks if this Operation contains an instance of the Algorithm implementation specified via its type class.

T

T() - Method in interface neureka.Tensor
Creates and returns a new Tensor instance which is a transposed twin of this instance.
This is a shorter alternative to the functionally identical Tensor.getT() method.
TANH - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
tanh(double) - Static method in class neureka.backend.main.implementations.fun.ScalarTanh
 
tanh(float) - Static method in class neureka.backend.main.implementations.fun.ScalarTanh
 
Tanh - Class in neureka.backend.main.operations.functions
 
Tanh() - Constructor for class neureka.backend.main.operations.functions.Tanh
 
tanh() - Method in class neureka.math.Functions
 
tanh() - Method in interface neureka.Tensor
This method is a functionally identical to the following alternatives:
TANH_FAST - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
 
TanhFast - Class in neureka.backend.main.operations.functions
 
TanhFast() - Constructor for class neureka.backend.main.operations.functions.TanhFast
 
targetArrayType() - Method in class neureka.dtype.custom.F32
 
targetArrayType() - Method in class neureka.dtype.custom.F64
 
targetArrayType() - Method in class neureka.dtype.custom.I16
 
targetArrayType() - Method in class neureka.dtype.custom.I32
 
targetArrayType() - Method in class neureka.dtype.custom.I64
 
targetArrayType() - Method in class neureka.dtype.custom.I8
 
targetArrayType() - Method in class neureka.dtype.custom.UI16
 
targetArrayType() - Method in class neureka.dtype.custom.UI32
 
targetArrayType() - Method in class neureka.dtype.custom.UI64
 
targetArrayType() - Method in class neureka.dtype.custom.UI8
 
targetArrayType() - Method in interface neureka.dtype.NumericType
The target type is the targeted JVM data-type which can represent the holder type.
targetToForeignHolderBytes(Float) - Method in class neureka.dtype.custom.F32
 
targetToForeignHolderBytes(Double) - Method in class neureka.dtype.custom.F64
 
targetToForeignHolderBytes(Short) - Method in class neureka.dtype.custom.I16
 
targetToForeignHolderBytes(Integer) - Method in class neureka.dtype.custom.I32
 
targetToForeignHolderBytes(Long) - Method in class neureka.dtype.custom.I64
 
targetToForeignHolderBytes(Byte) - Method in class neureka.dtype.custom.I8
 
targetToForeignHolderBytes(Integer) - Method in class neureka.dtype.custom.UI16
 
targetToForeignHolderBytes(Long) - Method in class neureka.dtype.custom.UI32
 
targetToForeignHolderBytes(BigInteger) - Method in class neureka.dtype.custom.UI64
 
targetToForeignHolderBytes(Short) - Method in class neureka.dtype.custom.UI8
 
targetToForeignHolderBytes(TargetType) - Method in interface neureka.dtype.NumericType
 
targetType() - Method in class neureka.dtype.custom.F32
 
targetType() - Method in class neureka.dtype.custom.F64
 
targetType() - Method in class neureka.dtype.custom.I16
 
targetType() - Method in class neureka.dtype.custom.I32
 
targetType() - Method in class neureka.dtype.custom.I64
 
targetType() - Method in class neureka.dtype.custom.I8
 
targetType() - Method in class neureka.dtype.custom.UI16
 
targetType() - Method in class neureka.dtype.custom.UI32
 
targetType() - Method in class neureka.dtype.custom.UI64
 
targetType() - Method in class neureka.dtype.custom.UI8
 
targetType() - Method in interface neureka.dtype.NumericType
The target type is the targeted JVM data-type which can represent the holder type.
Tensor<V> - Interface in neureka
A Tensor is a mathematical concept and type of multidimensional data-structure with certain transformation properties.
Tensor.ImageType - Enum in neureka
Use this enum as argument for the Tensor.asImage(Tensor.ImageType) method to specify the type of image that should be returned.
tensors(Call.TensorsCondition) - Method in class neureka.backend.api.Call.Validator
 
TERRIBLE - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
THREAD_PREFIX - Static variable in class neureka.devices.host.CPU
 
threaded(int, CPU.RangeWorkload) - Method in class neureka.devices.host.CPU.JVMExecutor
This method slices the provided workload size into multiple ranges which can be executed in parallel.
threaded(int, CPU.IndexedWorkload) - Method in class neureka.devices.host.CPU.JVMExecutor
Executes the provided workload lambda across multiple threads where the provided worker lambda will receive the index/id of the current worker.
threaded(int, int, CPU.RangeWorkload) - Method in class neureka.devices.host.CPU.JVMExecutor
Takes the provided range and divides it into multithreaded workloads.
threads - Variable in class neureka.devices.host.machine.BasicMachine
 
threshold(int) - Method in class neureka.devices.host.concurrent.WorkScheduler.Divider
 
times(Tensor<V>) - Method in interface neureka.Tensor
This is a functionally identical synonym to the Tensor.multiply(Tensor) method.
times(V) - Method in interface neureka.Tensor
 
timesAssign(Tensor<T>) - Method in interface neureka.MutateTensor
 
timesAssign(T) - Method in interface neureka.MutateTensor
 
to(T) - Static method in class neureka.backend.api.Call
 
to(V) - Method in class neureka.fluent.building.NdaBuilder
 
To<V> - Interface in neureka.fluent.building.states
This step in the call transition graph of the fluent builder API is a followup call from the IterByOrIterFromOrAll.andFillFrom(Object) method which expects a range to be specified whose values will be used to populate the Tensor instance.
to(V) - Method in interface neureka.fluent.building.states.To
This step in the call transition graph of the fluent builder API is a followup call from the IterByOrIterFromOrAll.andFillFrom(Object) method which expects a range to be specified whose values will be used to populate the Tensor instance.
to(V) - Method in interface neureka.fluent.building.states.ToForTensor
This step in the call transition graph of the fluent builder API is a followup call from the IterByOrIterFromOrAll.andFillFrom(Object) method which expects a range to be specified whose values will be used to populate the Tensor instance.
to(int) - Method in class neureka.fluent.slicing.AxisSliceBuilder
This method returns an instance of this very AxisSliceBuilder instance disguised by the StepsOrAxisOrGet interface.
To<V> - Interface in neureka.fluent.slicing.states
This is the second part for defining the slice range of a specified axis within the call transition graph exposed by the slice builder API.
to(int) - Method in interface neureka.fluent.slicing.states.To
This is the second part for defining the slice range of a specified axis within the call transition graph exposed by the slice fluent builder API.
to(int) - Method in interface neureka.fluent.slicing.states.ToForTensor
This is the second part for defining the slice range of a specified axis within the call transition graph exposed by the slice fluent builder API.
to(Device<?>) - Method in interface neureka.Tensor
This method takes a Device and tries to migrate the contents of this Tensor instance to that Device!
to(String) - Method in interface neureka.Tensor
 
toByteArray(Function<Integer, Number>) - Method in class neureka.common.utility.DataConverter.ForTensor
 
toDoubleArray(Function<Integer, Number>) - Method in class neureka.common.utility.DataConverter.ForTensor
 
toFloatArray(Function<Integer, Number>) - Method in class neureka.common.utility.DataConverter.ForTensor
 
ToForTensor<V> - Interface in neureka.fluent.building.states
 
ToForTensor<V> - Interface in neureka.fluent.slicing.states
 
toIntArray(Function<Integer, Number>) - Method in class neureka.common.utility.DataConverter.ForTensor
 
toIntArray() - Method in interface neureka.Shape
 
toLayout(Tensor<?>, NDConfiguration.Layout) - Static method in class neureka.backend.main.operations.other.ReLayout
 
toLayout(NDConfiguration.Layout) - Method in interface neureka.MutateTensor
This method allows you to modify the data-layout of this AbstractNda.
toLongArray(Function<Integer, Number>) - Method in class neureka.common.utility.DataConverter.ForTensor
 
toObjectArray(Function<Integer, Object>) - Method in class neureka.common.utility.DataConverter.ForTensor
 
toOptional() - Method in interface neureka.Nda.Item
Converts this item into an optional value.
toShortArray(Function<Integer, Number>) - Method in class neureka.common.utility.DataConverter.ForTensor
 
toString() - Method in class neureka.autograd.GraphNode
 
toString(GraphNode.Print) - Method in class neureka.autograd.GraphNode
 
toString() - Method in class neureka.autograd.JITProp
 
toString() - Method in class neureka.backend.api.BackendContext
 
toString() - Method in class neureka.backend.api.ExecutionCall
 
toString() - Method in class neureka.backend.api.LazyRef
 
toString() - Method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
toString() - Method in class neureka.backend.api.template.operations.AbstractOperation
 
toString() - Method in class neureka.backend.ocl.CLBackend
 
toString() - Method in class neureka.devices.file.FileDevice
 
toString() - Method in class neureka.devices.host.CPU
 
toString() - Method in class neureka.devices.host.machine.BasicMachine
 
toString() - Method in class neureka.devices.host.machine.ConcreteMachine
 
toString() - Method in class neureka.devices.host.machine.Hardware
 
toString() - Method in class neureka.devices.opencl.OpenCLDevice
 
toString() - Method in class neureka.devices.opencl.OpenCLPlatform
 
toString() - Method in class neureka.dtype.DataType
 
toString() - Method in class neureka.framing.NDFrame
 
toString() - Method in class neureka.framing.Relation
 
toString() - Method in class neureka.math.args.Arg
 
toString() - Method in interface neureka.math.Function
Turns this function into a string representation which can be used to reconstruct this function or combine it with other function strings to parse entirely new functions...
toString() - Method in class neureka.math.FunctionCache
 
toString() - Method in class neureka.math.Functions
 
toString() - Method in class neureka.math.implementations.FunctionConstant
 
toString() - Method in class neureka.math.implementations.FunctionInput
 
toString() - Method in class neureka.math.implementations.FunctionNode
 
toString() - Method in class neureka.math.implementations.FunctionVariable
 
toString(NDPrintSettings) - Method in interface neureka.Nda
Use this to turn this nd-array into a String instance based on the provided NDPrintSettings instance, which allows you to configure things like the number of chars per entry, delimiters, the number of items per line, etc.
toString(Consumer<NDPrintSettings>) - Method in interface neureka.Nda
This allows you to provide a lambda which configures how this nd-array should be converted to String instances.
toString() - Method in interface neureka.Nda
This method returns a String representation of this nd-array.
toString() - Method in class neureka.ndim.config.AbstractNDC
 
toString() - Method in class neureka.Neureka.Settings.AutoGrad
 
toString() - Method in class neureka.Neureka.Settings.Debug
 
toString() - Method in class neureka.Neureka.Settings.DType
 
toString() - Method in class neureka.Neureka.Settings.NDim
 
toString() - Method in class neureka.Neureka.Settings
 
toString() - Method in class neureka.Neureka.Settings.View
 
toString() - Method in class neureka.Neureka
 
toString(String) - Method in interface neureka.Tensor
 
toString(NDPrintSettings) - Method in interface neureka.Tensor
Use this to turn this nd-array into a String instance based on the provided NDPrintSettings instance, which allows you to configure things like the number of chars per entry, delimiters, the number of items per line, etc.
toString(Consumer<NDPrintSettings>) - Method in interface neureka.Tensor
This allows you to provide a lambda which configures how this nd-array should be converted to String instances.
toString() - Method in class neureka.view.NdaAsString
 
toTarget(Float) - Method in class neureka.dtype.custom.F32
 
toTarget(Double) - Method in class neureka.dtype.custom.F64
 
toTarget(Short) - Method in class neureka.dtype.custom.I16
 
toTarget(Integer) - Method in class neureka.dtype.custom.I32
 
toTarget(Long) - Method in class neureka.dtype.custom.I64
 
toTarget(Byte) - Method in class neureka.dtype.custom.I8
 
toTarget(Short) - Method in class neureka.dtype.custom.UI16
 
toTarget(Integer) - Method in class neureka.dtype.custom.UI32
 
toTarget(Long) - Method in class neureka.dtype.custom.UI64
 
toTarget(Byte) - Method in class neureka.dtype.custom.UI8
 
toTarget(HolderType) - Method in interface neureka.dtype.NumericType
 
toType(Class<V>) - Method in interface neureka.MutateNda
This method is an inline operation which changes the underlying data of this tensor.
toType(Class<V>) - Method in interface neureka.MutateTensor
This method is an inline operation which changes the underlying data of this tensor.
transpose(Tensor<T>) - Static method in class neureka.backend.main.algorithms.Util
 
transpose(int, int) - Method in interface neureka.Nda
Returns a view of the original tensor input the targeted axes are swapped / transposed.
transpose(int, int) - Method in interface neureka.Tensor
Returns a view of the original tensor input the targeted axes are swapped / transposed.
transpose2D() - Method in class neureka.math.Functions
 
tryGroovyClosureOn(Object, Object) - Static method in class neureka.common.utility.SettingsLoader
This method makes it possible to configure the library via a Groovy DSL!
tryGroovyScriptsOn(Neureka, Consumer<String>) - Static method in class neureka.common.utility.SettingsLoader
 
type() - Method in class neureka.autograd.GraphNode
 
TYPE - Static variable in class neureka.backend.main.implementations.broadcast.CLScalarBroadcast
 
type() - Method in interface neureka.common.composition.Component.OwnerChangeRequest
type() - Method in class neureka.devices.opencl.OpenCLDevice
 
type() - Method in class neureka.devices.ReferenceCounter.ChangeEvent
 
typeClassImplements(Class<?>) - Method in class neureka.dtype.DataType
 

U

UI16 - Class in neureka.dtype.custom
 
UI16() - Constructor for class neureka.dtype.custom.UI16
 
UI32 - Class in neureka.dtype.custom
 
UI32() - Constructor for class neureka.dtype.custom.UI32
 
UI64 - Class in neureka.dtype.custom
 
UI64() - Constructor for class neureka.dtype.custom.UI64
 
UI8 - Class in neureka.dtype.custom
 
UI8() - Constructor for class neureka.dtype.custom.UI8
 
units - Variable in class neureka.devices.host.machine.CommonMachine
The number of top level (L3 or L2) cache units.
unpackAndCorrect(String) - Static method in class neureka.math.parsing.ParseUtil
 
UNSUITABLE - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
upcast(Class<U>) - Method in interface neureka.MutateTensor
Use this to do a runtime checked upcast of the type parameter of the tensor.
update(Component.OwnerChangeRequest<Tensor<V>>) - Method in class neureka.autograd.GraphNode
 
update(Component.OwnerChangeRequest<Extensions>) - Method in class neureka.backend.ocl.CLBackend
Updating the CLContext will cause the list of existing OpenCLPlatform instances to be cleared and refilled with completely new OpenCLPlatform instances.
update(Component.OwnerChangeRequest<O>) - Method in interface neureka.common.composition.Component
Components are not the slaves of their owners.
update(Component.OwnerChangeRequest<Tensor<V>>) - Method in class neureka.devices.AbstractDevice
A Device is a component of a tensor.
update(Component.OwnerChangeRequest<Tensor<Object>>) - Method in class neureka.devices.file.FileDevice
 
update(Component.OwnerChangeRequest<Tensor<Object>>) - Method in class neureka.devices.host.CPU
This method is part of the component system built into the Tensor class.
update(Component.OwnerChangeRequest<Tensor<Number>>) - Method in class neureka.devices.opencl.OpenCLDevice
 
update(Component.OwnerChangeRequest<Tensor<V>>) - Method in class neureka.framing.NDFrame
 
update(Component.OwnerChangeRequest<Tensor<V>>) - Method in class neureka.framing.Relation
 
update(Component.OwnerChangeRequest<Args>) - Method in class neureka.math.args.Arg
 
update(Component.OwnerChangeRequest<Tensor<V>>) - Method in interface neureka.Tensor
Important : Components of type Tensor are simply gradients! Currently, this method is used only to catch illegal arguments which is for example the case when trying to attach a gradient with a different shape...
usages() - Method in interface neureka.Data
This method returns the number of times this data object is currently in use by a nd-array, meaning that the number of usages is also the number of nd-arrays which are currently referencing this data object.
usages() - Method in class neureka.devices.AbstractDeviceData
 
usesAD() - Method in class neureka.autograd.GraphNode
This gradient node is involved in auto-differentiation.
usesForwardAD() - Method in class neureka.autograd.GraphNode
This node propagates forward.
usesReverseAD() - Method in class neureka.autograd.GraphNode
This node propagates _backward.
Util - Class in neureka.backend.main.algorithms
 
Util() - Constructor for class neureka.backend.main.algorithms.Util
 
Util() - Constructor for class neureka.view.NdaAsString.Util
 
Utility() - Constructor for class neureka.common.utility.DataConverter.Utility
 
Utility() - Constructor for class neureka.ndim.config.NDConfiguration.Utility
 
utility() - Method in class neureka.Neureka
 
Utility() - Constructor for class neureka.Neureka.Utility
 

V

validate() - Method in class neureka.backend.api.Call
 
Validator() - Constructor for class neureka.backend.api.Call.Validator
 
valOf(Class<T>) - Method in class neureka.math.args.Args
 
valOfOr(Class<T>, V) - Method in class neureka.math.args.Args
 
value() - Method in class neureka.math.implementations.FunctionConstant
 
valueOf(String) - Static method in enum neureka.autograd.GraphNode.Print
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.backend.api.AutoDiffMode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.backend.main.operations.linear.internal.opencl.CLReduce.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.backend.main.operations.other.internal.CPUReduce.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.common.composition.Component.IsBeing
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.devices.host.concurrent.Parallelism
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.devices.opencl.OpenCLDevice.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.devices.opencl.utility.Messages.Tips
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.devices.ReferenceCounter.ChangeType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.ndim.config.NDConfiguration.Layout
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.ndim.config.NDTrait
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.ndim.iterator.NDIterator.NonVirtual
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum neureka.Tensor.ImageType
Returns the enum constant of this type with the specified name.
values() - Static method in enum neureka.autograd.GraphNode.Print
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.backend.api.AutoDiffMode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.backend.main.operations.linear.internal.opencl.CLReduce.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.backend.main.operations.other.internal.CPUReduce.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.common.composition.Component.IsBeing
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.devices.host.concurrent.Parallelism
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.devices.opencl.OpenCLDevice.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.devices.opencl.utility.Messages.Tips
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.devices.ReferenceCounter.ChangeType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.ndim.config.NDConfiguration.Layout
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.ndim.config.NDTrait
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.ndim.iterator.NDIterator.NonVirtual
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum neureka.Tensor.ImageType
Returns an array containing the constants of this enum type, in the order they are declared.
vector(Object[]) - Method in class neureka.fluent.building.NdaBuilder
 
vector(V...) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVector
This method creates and returns a vector Tensor instance which wraps the provided values.
vector(List<V>) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVector
This method creates and returns a vector Tensor instance which wraps the provided values.
vector(Iterable<V>) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVector
This method creates and returns a vector Tensor instance which wraps the provided values.
vector(V...) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorTensor
This method creates and returns a vector Tensor instance which wraps the provided values.
vector(List<V>) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorTensor
This method creates and returns a vector Tensor instance which wraps the provided values.
vector(Iterable<V>) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorTensor
This method creates and returns a vector Tensor instance which wraps the provided values.
vendor() - Method in class neureka.devices.opencl.OpenCLDevice
 
version() - Method in class neureka.devices.opencl.OpenCLDevice
 
version() - Static method in class neureka.Neureka
 
VERY_GOOD - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
 
view() - Method in class neureka.Neureka.Settings
 
view(Object) - Method in class neureka.Neureka.Settings
 
virtualize() - Method in interface neureka.devices.Device.Access
 
virtualize() - Method in class neureka.devices.host.machine.Hardware
 
VirtualNDConfiguration - Class in neureka.ndim.config.types.views.virtual
VirtualNDConfigurations represent tensors which are filled homogeneously with a single value exclusively, like for example a tensor filled with only zeros.
VirtualNDIterator - Class in neureka.ndim.iterator.types.virtual
 
VirtualNDIterator(VirtualNDConfiguration) - Constructor for class neureka.ndim.iterator.types.virtual.VirtualNDIterator
 

W

with(Tensor<N>...) - Method in class neureka.backend.api.Call.Builder
 
with(F) - Method in interface neureka.backend.main.algorithms.internal.WithForward
 
With<ValueType,TargetType> - Interface in neureka.framing.fluent
 
with(ValueType) - Method in interface neureka.framing.fluent.With
 
with(Arg<?>...) - Method in interface neureka.math.Function
Use this to call this Function alongside with some additional meta-arguments which will be passed to the underlying Operation(s).
with(Args) - Method in interface neureka.math.Function
Use this to call this Function alongside with some additional meta-arguments which will be passed to the underlying Operation(s).
with(NDPrintSettings) - Method in class neureka.view.NDPrintSettings
 
with(String) - Method in class neureka.view.NDPrintSettings
 
withADAction(ADAction) - Method in class neureka.backend.api.Result
 
withAddedInputAt(int, Tensor<?>) - Method in class neureka.backend.api.ExecutionCall
 
withArgs(Arg<?>...) - Method in class neureka.backend.api.ExecutionCall
Use this to produce a clone with a new set of meta arguments.
withArity(int) - Static method in class neureka.backend.main.implementations.CPUImplementation
 
withAutoDiff(ADActionSupplier) - Method in class neureka.backend.api.Result
 
withAxesLabels(List<List<Object>>) - Method in class neureka.framing.NDFrame
 
withConfig(NDPrintSettings) - Method in interface neureka.view.NdaAsString.Builder
 
withConfig(String) - Method in interface neureka.view.NdaAsString.Builder
 
withDecayRate(double) - Method in class neureka.optimization.implementations.MomentumFactory
 
withDecayRate(double) - Method in class neureka.optimization.implementations.RMSPropFactory
 
WithForward<F> - Interface in neureka.backend.main.algorithms.internal
 
withInputAt(int, Tensor<?>) - Method in class neureka.backend.api.ExecutionCall
 
withInputs(Tensor<?>...) - Method in class neureka.backend.api.ExecutionCall
Use this to produce a clone with a new array of input tensors.
withLabel(String) - Method in class neureka.framing.NDFrame
 
withLabel(String) - Method in interface neureka.Nda
 
withLabel(String) - Method in interface neureka.Tensor
withLabels(String[]...) - Method in interface neureka.Nda
This method receives a nested String array which ought to contain a label for the index of this nd-array.
withLabels(List<List<Object>>) - Method in interface neureka.Nda
This method receives a nested String list which ought to contain a label for the index of this nd-array.
withLabels(Map<Object, List<Object>>) - Method in interface neureka.Nda
This method provides the ability to label not only the indices of the shape of this nd-array, but also the dimension of the shape.
withLabels(String[]...) - Method in interface neureka.Tensor
This method receives a nested String array which ought to contain a label for the index of this nd-array.
withLabels(List<List<Object>>) - Method in interface neureka.Tensor
This method receives a nested String list which ought to contain a label for the index of this nd-array.
withLabels(Map<Object, List<Object>>) - Method in interface neureka.Tensor
This method provides the ability to label not only the indices of the shape of this nd-array, but also the dimension of the shape.
withLearningRate(double) - Method in class neureka.optimization.implementations.AdaGradFactory
 
withLearningRate(double) - Method in class neureka.optimization.implementations.ADAMFactory
 
withLearningRate(double) - Method in class neureka.optimization.implementations.MomentumFactory
 
withLearningRate(double) - Method in class neureka.optimization.implementations.RMSPropFactory
 
withLearningRate(double) - Method in class neureka.optimization.implementations.SGDFactory
 
withName(String) - Static method in interface neureka.backend.api.Algorithm
This is a factory method for creating a new instance of this FunAlgorithm class.
withName(String) - Static method in interface neureka.backend.api.DeviceAlgorithm
This is a factory method for creating a new instance of this FunDeviceAlgorithm class.
withOperation(Operation) - Method in class neureka.backend.api.ExecutionCall
 
withRemovedInputAt(int) - Method in class neureka.backend.api.ExecutionCall
 
withShape(int...) - Method in class neureka.fluent.building.NdaBuilder
 
withShape(int...) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVector
Define a tensor shape by passing an array of int values to this method, which represent the shape of the Tensor that should be built.
withShape(List<N>) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVector
Define a tensor shape by passing a list of numbers to this method, which represent the shape of the Tensor that should be built.
withShape(int...) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorTensor
Define a tensor shape by passing an array of int values to this method, which represent the shape of the Tensor that should be built.
withShape(List<N>) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorTensor
Define a tensor shape by passing a list of numbers to this method, which represent the shape of the Tensor that should be built.
WithShapeOrScalarOrVector<V> - Interface in neureka.fluent.building.states
 
WithShapeOrScalarOrVectorOnDevice<V> - Interface in neureka.fluent.building.states
 
WithShapeOrScalarOrVectorTensor<V> - Interface in neureka.fluent.building.states
 
withTime(long) - Method in class neureka.optimization.implementations.ADAMFactory
 
WorkScheduler - Class in neureka.devices.host.concurrent
An API for registering workloads which will be divided into smaller workloads so that they can be executed efficiently by a thread pool...
WorkScheduler() - Constructor for class neureka.devices.host.concurrent.WorkScheduler
 
WorkScheduler.Divider - Class in neureka.devices.host.concurrent
Divides workloads until they can be processed efficiently and then submits them to a thread pool for execution...
write(V) - Method in interface neureka.devices.Device.Access
Use this to write a single scalar item into the accessed tensor at one or more positions within the tensor.
writeDataTo(DataOutput, Iterator<TargetType>) - Method in interface neureka.dtype.NumericType
This method writes all the target type elements returned by the provided iterator and write them into the provided "DataOutput" stream as bytes.
writeFrom(Object, int) - Method in interface neureka.devices.Device.Access
Use this to write data from an array into the accessed tensor.
writeFrom(Object) - Method in interface neureka.devices.Device.Access
Use this method to write data to the provided tensor, given that the tensor is already stored on this device!

X

XConvLeft - Class in neureka.backend.main.operations.linear
 
XConvLeft() - Constructor for class neureka.backend.main.operations.linear.XConvLeft
 
XConvRight - Class in neureka.backend.main.operations.linear
 
XConvRight() - Constructor for class neureka.backend.main.operations.linear.XConvRight
 
xor(Tensor<V>) - Method in interface neureka.Tensor
This method is a functionally identical synonym to the Tensor.power(Tensor) method.
xor(double) - Method in interface neureka.Tensor
This method is a functionally identical synonym to the Tensor.power(Tensor) method.

_

_actualize(Tensor<?>) - Method in class neureka.devices.AbstractDevice
 
_actualize(Tensor<?>) - Method in class neureka.devices.host.CPU
 
_actualize(Tensor<?>) - Method in class neureka.devices.opencl.OpenCLDevice
 
_approveExecutionOf(Tensor<?>[], int, Operation) - Method in class neureka.devices.AbstractDevice
This method is the internal approval routine called by its public counterpart and implemented by classes extending this very abstract class.
_approveExecutionOf(Tensor<?>[], int, Operation) - Method in class neureka.devices.host.CPU
 
_approveExecutionOf(Tensor<?>[], int, Operation) - Method in class neureka.devices.opencl.OpenCLDevice
 
_arguments - Variable in class neureka.backend.api.Call
Meta arguments which are usually specific to certain operations.
_arity - Variable in class neureka.backend.api.template.operations.AbstractOperation
Arity is the number of arguments or operands that this function or operation takes.
_cacheArray(int[]) - Static method in class neureka.ndim.config.AbstractNDC
This method receives an int array and returns an int array which can either be the one provided or an array found in the global int array cache residing inside this class.
_cached(T) - Static method in class neureka.ndim.config.AbstractNDC
 
_cleaning(Object, Runnable) - Method in class neureka.devices.AbstractDevice
 
_dataRef - Variable in class neureka.devices.AbstractDeviceData
 
_dataType - Variable in class neureka.devices.AbstractDeviceData
 
_dataTypeOf(Object) - Method in class neureka.devices.AbstractDevice
 
_dataTypeOf(Object) - Method in class neureka.devices.host.CPU
 
_dataTypeOf(Object) - Method in class neureka.devices.opencl.OpenCLDevice
 
_deleteComponents() - Method in class neureka.common.composition.AbstractComponentOwner
This method deletes the array of components of this component owner by nulling the array variable field.
_device - Variable in class neureka.backend.api.Call
This field references the device on which this ExecutionCall should be executed.
_function - Variable in class neureka.backend.api.template.operations.AbstractOperation
An operation may have two ways in which it can describe itself as String within a Function AST.
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcast
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastAddition
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastDivision
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastModulo
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastMultiplication
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastPower
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastSubtraction
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastSummation
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUScalaBroadcastPower
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcast
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastAddition
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastDivision
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastIdentity
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastModulo
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastMultiplication
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastSubtraction
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWise
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseAddition
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseDivision
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseModulo
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseMultiplication
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWisePower
 
_getDeriveAt0() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseSubtraction
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcast
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastAddition
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastDivision
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastModulo
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastMultiplication
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastPower
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastSubtraction
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastSummation
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUScalaBroadcastPower
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcast
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastAddition
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastDivision
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastIdentity
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastModulo
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastMultiplication
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastSubtraction
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWise
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseAddition
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseDivision
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseModulo
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseMultiplication
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWisePower
 
_getDeriveAt1() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseSubtraction
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcast
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastAddition
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastDivision
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastModulo
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastMultiplication
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastPower
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastSubtraction
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUBroadcastSummation
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUScalaBroadcastPower
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcast
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastAddition
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastDivision
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastIdentity
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastModulo
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastMultiplication
 
_getFun() - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcastSubtraction
 
_getFun() - Method in class neureka.backend.main.implementations.convolution.AbstractCPUConvolution
 
_getFun() - Method in class neureka.backend.main.implementations.convolution.CPUConvolution
 
_getFun() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWise
 
_getFun() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseAddition
 
_getFun() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseDivision
 
_getFun() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseModulo
 
_getFun() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseMultiplication
 
_getFun() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWisePower
 
_getFun() - Method in class neureka.backend.main.implementations.elementwise.CPUBiElementWiseSubtraction
 
_implementations - Variable in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
_inputs - Variable in class neureka.backend.api.Call
The tensor arguments from which an operation will either read or to which it will write.
_isDifferentiable - Variable in class neureka.backend.api.template.operations.AbstractOperation
Certain operations are not differentiable, meaning they cannot participate in neither forward nor reverse mode differentiation.
_isIndexer - Variable in class neureka.backend.api.template.operations.AbstractOperation
This flag determines if this operation is auto-indexing passed input arguments.
_isInline - Variable in class neureka.backend.api.template.operations.AbstractOperation
Inline operations are operations which change the state of the arguments passed to them.
_isOperator - Variable in class neureka.backend.api.template.operations.AbstractOperation
 
_loadData() - Method in class neureka.devices.file.CSVHandle
 
_loadData() - Method in class neureka.devices.file.IDXHandle
 
_log - Variable in class neureka.devices.AbstractDevice
 
_numberOfDataObjects - Variable in class neureka.devices.AbstractBaseDevice
 
_numberOfTensors - Variable in class neureka.devices.AbstractBaseDevice
 
_operator - Variable in class neureka.backend.api.template.operations.AbstractOperation
An operation may have two ways in which it can describe itself as String within a Function AST.
_owner - Variable in class neureka.devices.AbstractDeviceData
 
_prepareForExecution(ExecutionCall<? extends Device<?>>) - Static method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
 
_readAll(Tensor<T>, boolean) - Method in class neureka.devices.AbstractDevice
 
_readAll(Tensor<T>, boolean) - Method in class neureka.devices.host.CPU
 
_readAll(Tensor<T>, boolean) - Method in class neureka.devices.opencl.OpenCLDevice
 
_readArray(Tensor<T>, Class<A>, int, int) - Method in class neureka.devices.AbstractDevice
 
_readArray(Tensor<T>, Class<A>, int, int) - Method in class neureka.devices.host.CPU
 
_readArray(Tensor<T>, Class<A>, int, int) - Method in class neureka.devices.opencl.OpenCLDevice
 
_readItem(Tensor<T>, int) - Method in class neureka.devices.AbstractDevice
 
_readItem(Tensor<T>, int) - Method in class neureka.devices.host.CPU
 
_readItem(Tensor<T>, int) - Method in class neureka.devices.opencl.OpenCLDevice
 
_refCounter - Variable in class neureka.devices.AbstractDeviceData
 
_removeOrReject(T) - Method in class neureka.backend.api.Extensions
 
_removeOrReject(T) - Method in class neureka.common.composition.AbstractComponentOwner
An implementation of this method checks if the passed component should be removed from the component collection of this class or its removal should be "rejected".
_removeOrReject(T) - Method in class neureka.math.args.Args
 
_set(Component<T>) - Method in class neureka.common.composition.AbstractComponentOwner
 
_setOrReject(T) - Method in class neureka.backend.api.Extensions
 
_setOrReject(T) - Method in class neureka.common.composition.AbstractComponentOwner
This abstract method ought to be implemented further down the inheritance hierarchy where it's responsibility makes more sense, namely : An implementation of this method checks if the passed component should be added or "rejected" to the component collection of this class.
_setOrReject(T) - Method in class neureka.math.args.Args
 
_shape - Variable in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
The shape of the NDArray.
_shape - Variable in class neureka.ndim.config.types.simple.Simple1DConfiguration
The shape of the NDArray.
_shape - Variable in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
The shape of the NDArray.
_shape1 - Variable in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
The shape of the NDArray.
_shape1 - Variable in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
The shape of the NDArray.
_shape1 - Variable in class neureka.ndim.config.types.simple.Simple2DConfiguration
The shape of the NDArray.
_shape1 - Variable in class neureka.ndim.config.types.simple.Simple3DConfiguration
The shape of the NDArray.
_shape1 - Variable in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
The shape of the NDArray.
_shape1 - Variable in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
The shape of the NDArray.
_shape2 - Variable in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
 
_shape2 - Variable in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
 
_shape2 - Variable in class neureka.ndim.config.types.simple.Simple2DConfiguration
 
_shape2 - Variable in class neureka.ndim.config.types.simple.Simple3DConfiguration
 
_shape2 - Variable in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
 
_shape2 - Variable in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
 
_shape3 - Variable in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
 
_shape3 - Variable in class neureka.ndim.config.types.simple.Simple3DConfiguration
 
_shape3 - Variable in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
 
_simpleReshape(int[], NDConfiguration) - Static method in class neureka.ndim.config.AbstractNDC
 
_sizeOccupiedBy(Tensor<T>) - Method in class neureka.devices.AbstractDevice
 
_sizeOccupiedBy(Tensor<T>) - Method in class neureka.devices.host.CPU
 
_sizeOccupiedBy(Tensor<T>) - Method in class neureka.devices.opencl.OpenCLDevice
 
_swap(Tensor<T>, Tensor<T>) - Method in class neureka.devices.AbstractDevice
This method is used internally mostly and should not be used in most cases.
_swap(Tensor<T>, Tensor<T>) - Method in class neureka.devices.host.CPU
 
_swap(Tensor<T>, Tensor<T>) - Method in class neureka.devices.opencl.OpenCLDevice
 
_this() - Method in class neureka.common.composition.AbstractComponentOwner
 
_transferFrom(AbstractComponentOwner<C>) - Method in class neureka.common.composition.AbstractComponentOwner
A component owner might need to exchange components.
_virtualize(Tensor<?>) - Method in class neureka.devices.AbstractDevice
 
_virtualize(Tensor<?>) - Method in class neureka.devices.host.CPU
 
_virtualize(Tensor<?>) - Method in class neureka.devices.opencl.OpenCLDevice
 
_work(int, int) - Method in class neureka.devices.host.concurrent.WorkScheduler
 
_workloadFor(ExecutionCall<CPU>) - Method in class neureka.backend.main.implementations.broadcast.CPUScalarBroadcast
 
_writeArray(Tensor<T>, Object, int, int, int) - Method in class neureka.devices.AbstractDevice
 
_writeArray(Tensor<T>, Object, int, int, int) - Method in class neureka.devices.host.CPU
 
_writeArray(Tensor<T>, Object, int, int, int) - Method in class neureka.devices.opencl.OpenCLDevice
 
_writeItem(Tensor<T>, T, int, int) - Method in class neureka.devices.AbstractDevice
 
_writeItem(Tensor<T>, T, int, int) - Method in class neureka.devices.host.CPU
 
_writeItem(Tensor<T>, T, int, int) - Method in class neureka.devices.opencl.OpenCLDevice
 
A B C D E F G H I J K L M N O P Q R S T U V W X _ 
Skip navigation links