- GASU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- GaSU - Class in neureka.backend.main.operations.functions
-
The Self Gated
Softsign
Unit is based on the
Softsign
function
(a computationally cheap non-exponential quasi
Tanh
)
making it a polynomially based version of the
GaTU
function which
is itself based on the
Tanh
function.
- GaSU() - Constructor for class neureka.backend.main.operations.functions.GaSU
-
- GATU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- GaTU - Class in neureka.backend.main.operations.functions
-
The Self Gated
Tanh
Unit is based on the
Tanh
making it an exponentiation based version of the
GaSU
function which
is itself based on the
Softsign
function
(a computationally cheap non-exponential quasi
Tanh
).
- GaTU() - Constructor for class neureka.backend.main.operations.functions.GaTU
-
- gaus() - Method in class neureka.math.Functions
-
- GAUSSIAN - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- Gaussian - Class in neureka.backend.main.operations.functions
-
- Gaussian() - Constructor for class neureka.backend.main.operations.functions.Gaussian
-
- GAUSSIAN_FAST - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- GaussianFast - Class in neureka.backend.main.operations.functions
-
- GaussianFast() - Constructor for class neureka.backend.main.operations.functions.GaussianFast
-
- gaussianFrom(long, double[]) - Static method in class neureka.backend.main.implementations.elementwise.CPURandomization
-
- GELU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- gelu(double) - Static method in class neureka.backend.main.implementations.fun.ScalarGeLU
-
- GeLU - Class in neureka.backend.main.operations.functions
-
The GELU activation function is based on the standard Gaussian cumulative distribution function
and is defined as x Φ( x )
and implemented as x * sigmoid(x * 1.702)
.
- GeLU() - Constructor for class neureka.backend.main.operations.functions.GeLU
-
- gelu() - Method in class neureka.math.Functions
-
- GEMM - Class in neureka.backend.main.operations.linear.internal.blas
-
A collection of primitive sub-routines for matrix multiplication performed on
continuous arrays which are designed so that they can be vectorized by the
JVMs JIT compiler (AVX instructions).
- GEMM() - Constructor for class neureka.backend.main.operations.linear.internal.blas.GEMM
-
- GEMM.VectorOperationF32 - Interface in neureka.backend.main.operations.linear.internal.blas
-
- GEMM.VectorOperationF64 - Interface in neureka.backend.main.operations.linear.internal.blas
-
- get() - Method in class neureka.backend.api.Call.Builder
-
- get(Class<T>) - Method in class neureka.backend.api.Call
-
- get() - Method in class neureka.backend.api.LazyRef
-
- get() - Method in class neureka.backend.api.Result
-
- get(Class<T>) - Method in class neureka.common.composition.AbstractComponentOwner
-
This method tries to find a component inside the internal
component array whose class matches the one provided.
- get(Class<T>) - Method in interface neureka.common.composition.ComponentOwner
-
Use this to get the component of the specified component type class.
- get() - Static method in class neureka.common.utility.DataConverter
-
This method returns the singleton.
- get() - Method in interface neureka.Data
-
This returns the underlying raw data object of a nd-array or tensor
of a backend specific type (e.g.
- get(String...) - Static method in interface neureka.devices.Device
-
This method returns
Device
instances matching
the given search parameter.
- get(Class<D>, String...) - Static method in interface neureka.devices.Device
-
This method returns
Device
instances matching
the given search parameters.
- get() - Static method in class neureka.devices.host.CPU
-
Use this method to access the singleton instance of this
CPU
class,
which is a
Device
type and default location for freshly instantiated
Tensor
instances.
- get(String) - Method in class neureka.devices.opencl.KernelCache
-
- get(cl_device_id) - Method in class neureka.devices.opencl.OpenCLPlatform
-
- get() - Method in class neureka.fluent.slicing.AxisSliceBuilder
-
- get() - Method in class neureka.fluent.slicing.SliceBuilder
-
- get() - Method in interface neureka.fluent.slicing.states.AxisOrGet
-
This method concludes the slicing API by performing the actual slicing and
returning the resulting
Tensor
instance based on the previously
specified slice configuration...
- get() - Method in interface neureka.fluent.slicing.states.AxisOrGetTensor
-
This method concludes the slicing API by performing the actual slicing and
returning the resulting
Tensor
instance based on the previously
specified slice configuration...
- get() - Method in interface neureka.fluent.slicing.states.StepsOrAxisOrGetTensor
-
This method concludes the slicing API by performing the actual slicing and
returning the resulting
Tensor
instance based on the previously
specified slice configuration...
- Get<ValueType> - Interface in neureka.framing.fluent
-
- get() - Method in interface neureka.framing.fluent.Get
-
- get(List<Object>) - Method in class neureka.framing.NDFrame
-
- get(Object...) - Method in class neureka.framing.NDFrame
-
- get() - Method in class neureka.math.args.Arg
-
- get(String, boolean) - Method in class neureka.math.FunctionCache
-
- get(int...) - Method in interface neureka.Nda
-
The following method enables access to specific scalar elements within the nd-array.
- get(Object...) - Method in interface neureka.Nda
-
The following method enables the creation of nd-array slices which access
the same underlying data (possibly from a different view).
- get(int) - Method in interface neureka.Nda
-
This getter method creates and returns a slice of the original nd-array.
- get(Number) - Method in interface neureka.Nda
-
This getter method creates and returns a slice of the original nd-array.
- get(Object) - Method in interface neureka.Nda
-
This method enables nd-array slicing!
It takes a key of various types and configures a slice
nd-array which shares the same underlying data as the original nd-array.
- get() - Method in interface neureka.Nda.Item
-
Get the value at the targeted position or throw an exception if the item does not exist.
- get(int) - Method in interface neureka.ndim.iterator.NDIterator
-
- get() - Method in interface neureka.ndim.iterator.NDIterator
-
- get(int) - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
- get() - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
- get(int) - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
- get() - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
- get(int) - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
- get() - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
- get(int) - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
- get() - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
- get(int) - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
- get() - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
- get(int) - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
- get() - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
- get(int) - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
- get() - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
- get(int) - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
- get() - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
- get(int) - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
- get() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
-
- get(int) - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
-
- get() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
-
- get() - Static method in class neureka.Neureka
-
The
Neureka
class represents the configuration of this library.
- get(int) - Method in interface neureka.Shape
-
- get(int...) - Method in interface neureka.Tensor
-
The following method enables access to specific scalar elements within the nd-array.
- get(Object...) - Method in interface neureka.Tensor
-
The following method enables the creation of nd-array slices which access
the same underlying data (possibly from a different view).
- get(int) - Method in interface neureka.Tensor
-
This getter method creates and returns a slice of the original nd-array.
- get(Number) - Method in interface neureka.Tensor
-
This getter method creates and returns a slice of the original nd-array.
- get(Object) - Method in interface neureka.Tensor
-
This method enables nd-array slicing!
It takes a key of various types and configures a slice
nd-array which shares the same underlying data as the original nd-array.
- getAbs() - Method in class neureka.math.Functions
-
- getActivation() - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarAbsolute
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarCbrt
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarCosinus
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarExp
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGaSU
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGaTU
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGaussian
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGaussianFast
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarGeLU
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarIdentity
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarLog10
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarLogarithm
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarQuadratic
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarReLU
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSeLU
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSigmoid
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSiLU
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSinus
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSoftplus
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSoftsign
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarSqrt
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarTanh
-
- getActivation() - Method in class neureka.backend.main.implementations.fun.ScalarTanhFast
-
- getActiveThreadCount() - Method in class neureka.devices.host.CPU.JVMExecutor
-
Returns the approximate number of threads that are actively
executing tasks.
- getAdd() - Method in class neureka.math.Functions
-
- getAddAssign() - Method in class neureka.math.Functions
-
- getAdHocKernel(String) - Method in class neureka.devices.opencl.OpenCLDevice
-
- getAgentSupplier() - Method in class neureka.backend.api.Result
-
- getAlgorithm() - Method in class neureka.backend.api.ExecutionCall
-
- getAlgorithm(Class<T>) - Method in interface neureka.backend.api.Operation
-
- getAlgorithm(Class<T>) - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- getAlgorithmFor(ExecutionCall<?>) - Method in interface neureka.backend.api.Operation
-
Alongside a component system made up of
Algorithm
instances, implementations
of this interface also ought to express a routing mechanism which finds the best
Algorithm
for a given
ExecutionCall
instance.
- getAlgorithmFor(ExecutionCall<?>) - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- getAlgorithmName() - Method in interface neureka.backend.api.ini.LoadingContext
-
- getAll(Class<T>) - Method in class neureka.common.composition.AbstractComponentOwner
-
This method tries to find all components inside the internal
component array whose classes are sub types of the one provided.
- getAll(Class<T>) - Method in interface neureka.common.composition.ComponentOwner
-
Use this to get all components of the specified component type class.
- getAllAlgorithms() - Method in interface neureka.backend.api.Operation
-
- getAllAlgorithms() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- getAllAliases() - Method in class neureka.framing.fluent.AxisFrame
-
- getAllAliasesForIndex(int) - Method in class neureka.framing.fluent.AxisFrame
-
- getAllFunctions() - Method in interface neureka.math.Function
-
- getAndRemovePendingError() - Method in class neureka.autograd.GraphNode
-
This method is called by the JITProp component.
- getArchitecture() - Static method in class neureka.devices.host.machine.ConcreteMachine
-
- getArity() - Method in interface neureka.backend.api.Operation
-
Arity is the number of arguments or operands
that this function or operation takes.
- getArity() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- getArity() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getAsInt() - Method in enum neureka.devices.host.concurrent.Parallelism
-
- getAt(int...) - Method in interface neureka.Nda
-
The following method enables access to specific scalar elements within the nd-array.
- getAt(Number) - Method in interface neureka.Nda
-
This getter method creates and returns a slice of the original nd-array.
- getAt(Object...) - Method in interface neureka.Nda
-
The following method enables the creation of nd-array slices which access
the same underlying data (possibly from a different view).
- getAt(int) - Method in interface neureka.Nda
-
This getter method creates and returns a slice of the original nd-array.
- getAt(Map<?, Integer>) - Method in interface neureka.Nda
-
This method is most useful when used in Groovy
where defining maps is done through square brackets,
making it possible to slice nd-arrays like so:
- getAt(List<?>) - Method in interface neureka.Nda
-
This method enables nd-array slicing!
It takes a key of various types and configures a slice
nd-array which shares the same underlying data as the original nd-array.
- getAt(int...) - Method in interface neureka.Tensor
-
The following method enables access to specific scalar elements within the nd-array.
- getAt(Number) - Method in interface neureka.Tensor
-
This getter method creates and returns a slice of the original nd-array.
- getAt(Object...) - Method in interface neureka.Tensor
-
The following method enables the creation of nd-array slices which access
the same underlying data (possibly from a different view).
- getAt(int) - Method in interface neureka.Tensor
-
This getter method creates and returns a slice of the original nd-array.
- getAt(Map<?, Integer>) - Method in interface neureka.Tensor
-
This method is most useful when used in Groovy
where defining maps is done through square brackets,
making it possible to slice nd-arrays like so:
- getAt(List<?>) - Method in interface neureka.Tensor
-
This method enables nd-array slicing!
It takes a key of various types and configures a slice
nd-array which shares the same underlying data as the original nd-array.
- getAutogradFunction() - Method in class neureka.backend.api.BackendContext
-
This method returns a
Functions
instance which wraps pre-instantiated
Function
instances which are configured to track their computational history.
- getBackend() - Method in class neureka.Neureka
-
- getCbrt() - Method in class neureka.math.Functions
-
- getCellSize() - Method in class neureka.view.NDPrintSettings
-
A cell size refers to the number of characters reserved to
the String
representation of a single element.
- getChildren() - Method in class neureka.autograd.GraphNode
-
The children are
GraphNode
instances which represent computations
involving the payload of this very
GraphNode
instance.
- getChildren() - Method in class neureka.framing.Relation
-
- getCode() - Method in class neureka.devices.opencl.KernelCode
-
- getColLabels() - Method in class neureka.devices.file.CSVHandle
-
- getCompletedTaskCount() - Method in class neureka.devices.host.CPU.JVMExecutor
-
Returns the approximate total number of tasks that have
completed execution.
- getConcat() - Method in class neureka.math.Functions
-
- getContext() - Method in class neureka.devices.opencl.OpenCLPlatform
-
- getConv() - Method in class neureka.math.Functions
-
- getCoreCount() - Method in class neureka.devices.host.CPU
-
Returns the number of CPU cores available to the Java virtual machine.
- getCorePoolSize() - Method in class neureka.devices.host.CPU.JVMExecutor
-
Returns the core number of threads.
- getCos() - Method in class neureka.math.Functions
-
- getData() - Method in class neureka.common.utility.ListReader.Result
-
- getData() - Method in interface neureka.MutateNda
-
At the heart of every tensor is the
Data
object, which holds the actual data array,
a sequence of values of the same type.
- getDataAs(Class<A>) - Method in interface neureka.MutateNda
-
This method returns the data of this nd-array as a Java array of the specified type.
- getDataAs(Class<A>) - Method in interface neureka.Nda
-
Use this to get the items of the underlying
Data
buffer
of this nd-array as a primitive array
of the specified type.
- getDataAt(int) - Method in interface neureka.Nda
-
Use this to access elements of the underlying data array without any index
transformation applied to it.
- getDataForWriting(Class<A>) - Method in interface neureka.MutateTensor
-
Use this to access the underlying writable data of this tensor if
you want to modify it.
- getDataSize() - Method in interface neureka.devices.Device.Access
-
- getDataSize() - Method in class neureka.devices.file.CSVHandle
-
- getDataSize() - Method in interface neureka.devices.file.FileHandle
-
This method returns the byte size of the data which is stored
in the tensor of the file which is managed by this
FileHandle
.
- getDataSize() - Method in class neureka.devices.file.IDXHandle
-
- getDataType() - Method in class neureka.devices.file.CSVHandle
-
- getDataType() - Method in interface neureka.devices.file.FileHandle
-
- getDataType() - Method in class neureka.devices.file.IDXHandle
-
- getDataType() - Method in class neureka.devices.opencl.KernelCode
-
- getDataType() - Method in interface neureka.Tensor
-
This method returns the
DataType
instance of this
Tensor
, which is
a wrapper object for the actual type class representing the value items stored inside
the underlying data array of this tensor.
- getDefaultAlgorithm() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- getDefaultDataType() - Method in class neureka.Neureka.Settings.DType
-
- getDefaultDataTypeClass() - Method in class neureka.Neureka.Settings.DType
-
The default data type is not relevant most of the time.
- getDelimiter() - Method in class neureka.devices.file.CSVHandle
-
- getDerivative() - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarAbsolute
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarCbrt
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarCosinus
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarExp
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGaSU
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGaTU
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGaussian
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGaussianFast
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarGeLU
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarIdentity
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarLog10
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarLogarithm
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarQuadratic
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarReLU
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSeLU
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSigmoid
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSiLU
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSinus
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSoftplus
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSoftsign
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarSqrt
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarTanh
-
- getDerivative() - Method in class neureka.backend.main.implementations.fun.ScalarTanhFast
-
- getDerivative(int) - Method in interface neureka.math.Function
-
This method builds a new
Function
which is the derivative of this
Function
with respect to the provided input index.
- getDerivative(int) - Method in class neureka.math.implementations.FunctionConstant
-
- getDerivative(int) - Method in class neureka.math.implementations.FunctionInput
-
- getDerivative(int) - Method in class neureka.math.implementations.FunctionNode
-
- getDerivative(int) - Method in class neureka.math.implementations.FunctionVariable
-
- getDerivativeIndex() - Method in class neureka.backend.api.Call
-
- getDerivator() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getDevice() - Method in class neureka.backend.api.Call
-
- getDevice() - Method in interface neureka.Tensor
-
- getDeviceFor(Class<T>) - Method in class neureka.backend.api.Call
-
- getDevices() - Method in class neureka.devices.opencl.OpenCLPlatform
-
- getDimTrim() - Method in class neureka.math.Functions
-
- getDirectory() - Method in class neureka.devices.file.FileDevice
-
- getDiv() - Method in class neureka.math.Functions
-
- getDivAssign() - Method in class neureka.math.Functions
-
- getDot() - Method in class neureka.math.Functions
-
- getEstimation() - Method in class neureka.backend.api.Call.Validator.Estimator
-
- getEstimator() - Method in class neureka.backend.api.Call.Validator
-
- getExecutor() - Method in class neureka.devices.host.CPU
-
The
CPU.JVMExecutor
offers a similar functionality as the parallel stream API,
however it differs in that the
CPU.JVMExecutor
is processing
CPU.RangeWorkload
lambdas
instead of simply exposing a single index or concrete elements for a given workload size.
- getExp() - Method in class neureka.math.Functions
-
- getExtensions() - Method in class neureka.backend.api.BackendContext
-
- getFastGaus() - Method in class neureka.math.Functions
-
- getFastTanh() - Method in class neureka.math.Functions
-
- getFileName() - Method in interface neureka.devices.file.FileHandle
-
- getFrame() - Method in interface neureka.Tensor
-
- getFunction() - Method in class neureka.autograd.GraphNode
-
Recorded Function which produced this
GraphNode
.
- getFunction() - Method in class neureka.backend.api.BackendContext
-
This method returns a
Functions
instance which wraps pre-instantiated
Function
instances which are configured to not track their computational history.
- getFunctionCache() - Method in class neureka.backend.api.BackendContext
-
- getGaus() - Method in class neureka.math.Functions
-
- getGelu() - Method in class neureka.math.Functions
-
- getGradient() - Method in interface neureka.Tensor
-
- getGraphNode() - Method in interface neureka.Tensor
-
- getHasDerivatives() - Method in class neureka.view.NDPrintSettings
-
- getHasGradient() - Method in class neureka.view.NDPrintSettings
-
- getHasRecursiveGraph() - Method in class neureka.view.NDPrintSettings
-
- getHasShape() - Method in class neureka.view.NDPrintSettings
-
- getHasSlimNumbers() - Method in class neureka.view.NDPrintSettings
-
- getHasValue() - Method in class neureka.view.NDPrintSettings
-
- getId() - Method in class neureka.devices.opencl.OpenCLDevice
-
- getId() - Method in class neureka.devices.opencl.OpenCLPlatform
-
- getIdentifier() - Method in interface neureka.backend.api.Operation
-
Concrete
Operation
types ought to be representable by a function name.
- getIdentifier() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- getIdentifier() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getIdy() - Method in class neureka.math.Functions
-
- getImplementationFor(Class<D>) - Method in interface neureka.backend.api.DeviceAlgorithm
-
- getImplementationFor(D) - Method in interface neureka.backend.api.DeviceAlgorithm
-
- getImplementationFor(Class<D>) - Method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
-
- getIndent() - Method in class neureka.view.NDPrintSettings
-
- getIndexAndIncrement() - Method in interface neureka.ndim.iterator.NDIterator
-
- getIndexAtAlias(Object) - Method in class neureka.framing.fluent.AxisFrame
-
- getIndexToIndexAccessPattern() - Method in interface neureka.ndim.config.NDConfiguration
-
- getInt(cl_device_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
Returns the value of the device info parameter with the given name
- getInts(cl_device_id, int, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
Returns the values of the device info parameter with the given name
- getIsAutoConvertingExternalDataToJVMTypes() - Method in class neureka.Neureka.Settings.DType
-
This flag will determine if foreign data types will be converted into the next best fit (in terms of bits)
or if it should be converted into something that does not mess with the representation of the data.
- getIsCellBound() - Method in class neureka.view.NDPrintSettings
-
- getIsDifferentiable() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getIsIndexer() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getIsInline() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getIsLegacy() - Method in class neureka.view.NDPrintSettings
-
This flag determines the usage of bracket types,
where "[1x3]:(1, 2, 3)"
would be the legacy version
of "(1x3):[1, 2, 3]"
.
- getIsMultiline() - Method in class neureka.view.NDPrintSettings
-
- getIsOperator() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getIsScientific() - Method in class neureka.view.NDPrintSettings
-
- getItem() - Method in interface neureka.Nda
-
- getItems() - Method in interface neureka.Nda
-
A more verbose version of the
Nda.items()
method (best used by JVM languages with property support).
- getItemsAs(Class<A>) - Method in interface neureka.Nda
-
Use this to get the items of this nd-array as a primitive array
of the specified type.
- getItemType() - Method in interface neureka.Nda
-
- getItemTypeClass() - Method in class neureka.dtype.DataType
-
- getKernel(ExecutionCall<OpenCLDevice>) - Method in class neureka.devices.opencl.OpenCLDevice
-
- getKernel(String) - Method in class neureka.devices.opencl.OpenCLDevice
-
- getKernel(String) - Method in class neureka.devices.opencl.OpenCLPlatform
-
- getKernelCode() - Method in class neureka.backend.main.implementations.ParsedCLImplementation
-
- getKernelCode() - Method in class neureka.backend.main.implementations.SimpleCLImplementation
-
- getKernelCode() - Method in interface neureka.devices.opencl.StaticKernelSource
-
- getKernelFor(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.ParsedCLImplementation
-
- getKernelFor(ExecutionCall<OpenCLDevice>) - Method in class neureka.backend.main.implementations.SimpleCLImplementation
-
- getKernelFor(ExecutionCall<OpenCLDevice>) - Method in interface neureka.devices.opencl.KernelSource
-
- getLabel() - Method in class neureka.framing.NDFrame
-
- getLabel() - Method in interface neureka.Nda
-
A nd-array can have a label.
- getLayout() - Method in interface neureka.ndim.config.NDConfiguration
-
The layout of most tensors is either row major or column major.
- getLearningRate() - Method in class neureka.optimization.implementations.ADAM
-
- getLn() - Method in class neureka.math.Functions
-
- getLoadable() - Method in class neureka.devices.file.FileDevice
-
- getLoaded() - Method in class neureka.devices.file.FileDevice
-
- getLoader() - Method in interface neureka.backend.api.BackendExtension
-
- getLoader() - Method in class neureka.backend.cpu.CPUBackend
-
- getLoader() - Method in class neureka.backend.ocl.CLBackend
-
- getLocation() - Method in interface neureka.devices.file.FileHandle
-
- getLog10() - Method in class neureka.math.Functions
-
- getLong(cl_device_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
Returns the value of the device info parameter with the given name
- getLongs(cl_device_id, int, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
Returns the values of the device info parameter with the given name
- getLongs(int, ByteBuffer, long[]) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
- getMatMul() - Method in class neureka.math.Functions
-
- getMax() - Method in class neureka.math.Functions
-
- getMemory() - Static method in class neureka.devices.host.machine.ConcreteMachine
-
- getMin() - Method in class neureka.math.Functions
-
- getMinus() - Method in class neureka.math.Functions
-
- getMinusAssign() - Method in class neureka.math.Functions
-
- getMod() - Method in class neureka.math.Functions
-
- getModAssign() - Method in class neureka.math.Functions
-
- getMode() - Method in class neureka.autograd.GraphNode
-
This is the getter for an important
GraphNode
property which
holds the auto-differentiation mode used by this instance to
decide if a given error should be forward propagated
backward propagated or not propagated at all.
- getMomentum() - Method in class neureka.optimization.implementations.ADAM
-
- getMul() - Method in class neureka.math.Functions
-
- getMulAssign() - Method in class neureka.math.Functions
-
- getMut() - Method in interface neureka.Nda
-
This method exposes an API for mutating the state of this tensor.
- getMut() - Method in interface neureka.Tensor
-
This method exposes an API for mutating the state of this tensor.
- getName() - Method in interface neureka.backend.api.Algorithm
-
The name of an
Algorithm
may be used for OpenCL kernel compilation or simply
for debugging purposes to identify which type of algorithm is being executed at any
given time...
- getName() - Method in class neureka.devices.opencl.KernelCode
-
- getNDConf() - Method in interface neureka.ndim.NDimensional
-
- getNDPrintSettings() - Method in class neureka.Neureka.Settings.View
-
Settings for configuring how tensors should be converted to String
representations.
- getNeg() - Method in class neureka.math.Functions
-
- getNewInstance() - Static method in interface neureka.devices.DeviceCleaner
-
- getNewOwner() - Method in interface neureka.common.composition.Component.OwnerChangeRequest
-
- getNumberOfColumns() - Method in class neureka.devices.file.CSVHandle
-
- getNumberOfRows() - Method in class neureka.devices.file.CSVHandle
-
- getNumericTypeTarget() - Method in interface neureka.dtype.NumericType
-
This method returns the NumericType representation of the target type of this class.
- getOldOwner() - Method in interface neureka.common.composition.Component.OwnerChangeRequest
-
- getOperation(int) - Method in class neureka.backend.api.BackendContext
-
This method queries the operations in this
BackendContext
by a provided index integer targeting an entry in the list of
Operation
implementation instances
sitting in this execution context.
- getOperation(String) - Method in class neureka.backend.api.BackendContext
-
This method queries the operations in this BackendContext
by a provided identifier which has to match the name of
an existing operation.
- getOperation() - Method in class neureka.backend.api.ExecutionCall
-
This returns the operation which will ultimately process this execution call.
- getOperation() - Method in interface neureka.math.Function
-
- getOperation() - Method in class neureka.math.implementations.FunctionConstant
-
- getOperation() - Method in class neureka.math.implementations.FunctionInput
-
- getOperation() - Method in class neureka.math.implementations.FunctionNode
-
- getOperation() - Method in class neureka.math.implementations.FunctionVariable
-
- getOperationIdentidier() - Method in interface neureka.backend.api.ini.LoadingContext
-
- getOperationLookupMap() - Method in class neureka.backend.api.BackendContext
-
- getOperations() - Method in class neureka.backend.api.BackendContext
-
This method returns an unmodifiable view of the
list of
Operation
implementation instances managed by this context.
- getOperator() - Method in interface neureka.backend.api.Operation
-
- getOperator() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- getOperator() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getOrNull() - Method in interface neureka.Data
-
This returns the underlying raw data object of a nd-array or tensor
of a backend specific type (e.g.
- getOrNull() - Method in class neureka.devices.AbstractDeviceData
-
- getParent() - Method in class neureka.framing.Relation
-
- getParents() - Method in class neureka.autograd.GraphNode
-
- getPayload() - Method in class neureka.autograd.GraphNode
-
The value of a graph node is the tensor to which it belongs (is a component of).
- getPayloadDataType() - Method in class neureka.autograd.GraphNode
-
- getPayloadReferenceVersion() - Method in class neureka.autograd.GraphNode
-
This variable holds a copy of the version of the payload tensor
recorded when this GraphNode instance is instantiated.
- getPayloadShape() - Method in class neureka.autograd.GraphNode
-
Note: This method will never return null even if the actual payload tensor was garbage collected.
- getPendingError() - Method in class neureka.autograd.GraphNode
-
Used by the Just-In-Time back-prop component.
- getPermute() - Method in class neureka.math.Functions
-
- getPermuteRelationFor(Tensor<V>) - Method in class neureka.framing.Relation
-
When creating permuted versions of slices then
there must be a translation between the shape configuration between
this new slice and the original parent tensor from which both slices
have been derived.
- getPlatform() - Method in class neureka.devices.opencl.OpenCLDevice
-
- getPlatforms() - Method in class neureka.backend.ocl.CLBackend
-
- getPlus() - Method in class neureka.math.Functions
-
- getPlusAssign() - Method in class neureka.math.Functions
-
- getPostfix() - Method in class neureka.view.NDPrintSettings
-
- getPow() - Method in class neureka.math.Functions
-
- getPowAssign() - Method in class neureka.math.Functions
-
- getPrefix() - Method in class neureka.view.NDPrintSettings
-
- getQuad() - Method in class neureka.math.Functions
-
- getRandom() - Method in class neureka.math.Functions
-
- getRank() - Method in interface neureka.ndim.NDimensional
-
- getRawData() - Method in interface neureka.Nda
-
This returns an unprocessed version of the underlying data of this nd-array.
- getRawItems() - Method in interface neureka.Nda
-
- getRelayout() - Method in class neureka.math.Functions
-
- getRelu() - Method in class neureka.math.Functions
-
- getRepresentativeItemClass() - Method in interface neureka.Tensor
-
The
Class
returned by this method is the representative
Class
of the
value items of a concrete
AbstractNda
but not necessarily the actual
Class
of
a given value item, this is especially true for numeric types, which are represented by
implementations of the
NumericType
interface.
- getRepresentativeType() - Method in class neureka.dtype.DataType
-
- getReshape() - Method in class neureka.math.Functions
-
- getResult() - Method in class neureka.backend.main.memory.MemValidator
-
- getRowLabels() - Method in class neureka.devices.file.CSVHandle
-
- getRowLimit() - Method in class neureka.view.NDPrintSettings
-
Very large tensors with a rank larger than 1 might take a lot
of vertical space when converted to a String
.
- getSelu() - Method in class neureka.math.Functions
-
The Scaled Exponential Linear Unit, or SELU, is an activation
functions that induce self-normalizing properties.
- getSettings() - Method in class neureka.backend.ocl.CLBackend
-
- getShape() - Method in class neureka.common.utility.ListReader.Result
-
- getShape() - Method in class neureka.devices.file.CSVHandle
-
- getShape() - Method in interface neureka.devices.file.FileHandle
-
- getShape() - Method in class neureka.devices.file.IDXHandle
-
- getShape() - Method in interface neureka.ndim.NDConstructor
-
- getShape() - Method in interface neureka.ndim.NDimensional
-
- getSigmoid() - Method in class neureka.math.Functions
-
- getSilu() - Method in class neureka.math.Functions
-
The SiLu activation function, also known as the swish function, is defined as x * sigmoid(x)
.
- getSin() - Method in class neureka.math.Functions
-
- getSize(cl_device_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
Returns the value of the device info parameter with the given name
- getSize() - Method in interface neureka.ndim.NDConstructor
-
- getSize() - Method in interface neureka.ndim.NDimensional
-
- getSizes(cl_device_id, int, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
Returns the values of the device info parameter with the given name
- getSoftplus() - Method in class neureka.math.Functions
-
SoftPlus is a smooth approximation to the ReLU function and can be
used to constrain the output of a machine to always be positive.
- getSoftsign() - Method in class neureka.math.Functions
-
The softsign function, defined as
x / ( 1 + Math.abs( x ) )
,
is a computationally cheap 0 centered activation function
which rescales the inputs between -1 and 1, very much like the
Tanh
function.
- getSqrt() - Method in class neureka.math.Functions
-
- getState() - Method in class neureka.framing.NDFrame
-
- getString(cl_device_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
Returns the value of the device info parameter with the given name
- getString(cl_platform_id, int) - Static method in class neureka.devices.opencl.OpenCLDevice.Query
-
Returns the value of the platform info parameter with the given name
- getStringifier() - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- getSubFunctions() - Method in interface neureka.math.Function
-
- getSubFunctions() - Method in class neureka.math.implementations.FunctionConstant
-
- getSubFunctions() - Method in class neureka.math.implementations.FunctionInput
-
- getSubFunctions() - Method in class neureka.math.implementations.FunctionNode
-
- getSubFunctions() - Method in class neureka.math.implementations.FunctionVariable
-
- getSum() - Method in class neureka.math.Functions
-
- getT() - Method in interface neureka.Tensor
-
A method which returns a new
Tensor
instance which is a transposed twin of this instance.
This is an alternative to the functionally identical
Tensor.T()
method.
- getTanh() - Method in class neureka.math.Functions
-
- getter(At<Object, Get<GetType>>) - Method in class neureka.framing.fluent.AxisFrame.Builder
-
- getThreads() - Static method in class neureka.devices.host.machine.ConcreteMachine
-
- getTime() - Method in class neureka.optimization.implementations.ADAM
-
- getTotalNumberOfDevices() - Method in class neureka.backend.ocl.CLBackend
-
- getTotalSize() - Method in class neureka.devices.file.CSVHandle
-
- getTotalSize() - Method in interface neureka.devices.file.FileHandle
-
This method returns the number of bytes which are used to
store the tensor in the file whose access is being managed by an implementation
of th
FileHandle
interface.
- getTotalSize() - Method in class neureka.devices.file.IDXHandle
-
- getTraits() - Method in interface neureka.ndim.config.NDConfiguration
-
- getTranspose2D() - Method in class neureka.math.Functions
-
- getType() - Method in class neureka.common.utility.ListReader.Result
-
- getTypeClassInstance(Class<T>) - Method in class neureka.dtype.DataType
-
- getValOf(Class<T>) - Method in class neureka.backend.api.Call
-
- getValue() - Method in class neureka.common.utility.Cache.LazyEntry
-
- getValueSize() - Method in class neureka.devices.file.CSVHandle
-
- getValueSize() - Method in interface neureka.devices.file.FileHandle
-
This method return the size of the value which is stored
in the tensor of the file which is managed by this
FileHandle
.
- getValueSize() - Method in class neureka.devices.file.IDXHandle
-
- getVelocity() - Method in class neureka.optimization.implementations.ADAM
-
- getVersion() - Method in interface neureka.Tensor
-
The version number is tracking how often this tensor has been mutated.
- globalMemSize() - Method in class neureka.devices.opencl.OpenCLDevice
-
- GOOD - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
-
- goodIfAll(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
-
- goodIfAll(Call.TensorCompare) - Method in class neureka.backend.api.Call.Validator.Estimator
-
- goodIfAny(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
-
- goodIfAnyNonNull(Call.TensorCondition) - Method in class neureka.backend.api.Call.Validator.Estimator
-
- gradient() - Method in interface neureka.Tensor
-
- gradientApplyRequested() - Method in interface neureka.Tensor
-
This flag works alongside two autograd features which can be enabled inside the library settings.
- GraphNode<V> - Class in neureka.autograd
-
Instances of the
GraphNode
class are components of tensors (
Tensor
instances)
which model and record computations / operations between them.
- GraphNode(Function, ExecutionCall<Device<?>>, Supplier<Result>) - Constructor for class neureka.autograd.GraphNode
-
- graphNode() - Method in interface neureka.Tensor
-
- GraphNode.Print - Enum in neureka.autograd
-
- groupBy(String, String, String, String) - Static method in class neureka.math.parsing.ParseUtil
-
- i() - Method in interface neureka.ndim.iterator.NDIterator
-
- i() - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
- i() - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
- i() - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
- i() - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
- i() - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
- i() - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
- i() - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
- i() - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
- i() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
- i() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
-
- I16 - Class in neureka.dtype.custom
-
- I16() - Constructor for class neureka.dtype.custom.I16
-
- I32 - Class in neureka.dtype.custom
-
- I32() - Constructor for class neureka.dtype.custom.I32
-
- I64 - Class in neureka.dtype.custom
-
- I64() - Constructor for class neureka.dtype.custom.I64
-
- I8 - Class in neureka.dtype.custom
-
The following abstract class implements some basic logic which
is applicable across all final concrete classes extending this abstract one.
- I8() - Constructor for class neureka.dtype.custom.I8
-
- IAXPY - Class in neureka.backend.main.operations.linear.internal.blas
-
The ?axpy routines perform a vector-vector operation defined as y := a*x + y where: a is a scalar x and y
are vectors each with a number of elements that equals n.
- IAXPY() - Constructor for class neureka.backend.main.operations.linear.internal.blas.IAXPY
-
- id() - Method in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarAbsolute
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarCbrt
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarCosinus
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarExp
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarGaSU
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarGaTU
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarGaussian
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarGaussianFast
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarGeLU
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarIdentity
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarLog10
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarLogarithm
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarQuadratic
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarReLU
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarSeLU
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarSigmoid
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarSiLU
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarSinus
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarSoftplus
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarSoftsign
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarSqrt
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarTanh
-
- id() - Method in class neureka.backend.main.implementations.fun.ScalarTanhFast
-
- identifier(String) - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- IDENTITY - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- Identity - Class in neureka.backend.main.operations.functions
-
- Identity() - Constructor for class neureka.backend.main.operations.functions.Identity
-
- IDOT - Class in neureka.backend.main.operations.linear.internal.blas
-
The ?dot routines perform a vector-vector reduction operation defined as Equation where xi and yi are
elements of vectors x and y.
- IDOT() - Constructor for class neureka.backend.main.operations.linear.internal.blas.IDOT
-
- IDXHandle - Class in neureka.devices.file
-
This class is one of many extensions of the
AbstractFileHandle
which
is therefore ultimately an implementation of the
FileHandle
interface.
- IDXHandle(String) - Constructor for class neureka.devices.file.IDXHandle
-
- IDXHandle(Tensor<Number>, String) - Constructor for class neureka.devices.file.IDXHandle
-
- idy() - Method in class neureka.math.Functions
-
- ifValid(T) - Method in class neureka.backend.api.Call.Validator
-
- IGEMM - Class in neureka.backend.main.operations.linear.internal.blas
-
A collection of primitive sub-routines for matrix multiplication performed on
continuous arrays which are designed so that they can be vectorized by the
JVMs JIT compiler (AVX instructions).
- IGEMM() - Constructor for class neureka.backend.main.operations.linear.internal.blas.IGEMM
-
- IGEMM.VectorOperationI32 - Interface in neureka.backend.main.operations.linear.internal.blas
-
- IGEMM.VectorOperationI64 - Interface in neureka.backend.main.operations.linear.internal.blas
-
- image2DMaxHeight() - Method in class neureka.devices.opencl.OpenCLDevice
-
- image2DMaxWidth() - Method in class neureka.devices.opencl.OpenCLDevice
-
- image3DMaxDepth() - Method in class neureka.devices.opencl.OpenCLDevice
-
- image3DMaxHeight() - Method in class neureka.devices.opencl.OpenCLDevice
-
- image3DMaxWidth() - Method in class neureka.devices.opencl.OpenCLDevice
-
- imageSupport() - Method in class neureka.devices.opencl.OpenCLDevice
-
- ImplementationFor<D extends Device<?>> - Interface in neureka.backend.api
-
Generally speaking, this interface describes the functionality of an implementation
of an execution procedure tailored to a specific
Device
(interface) instance
and
Algorithm
(interface) instance!
Instances of implementations of the
ImplementationFor
interface are components
of instances of implementations of the
Algorithm
interface,
which themselves are components of
Operation
implementation instances.
- ImplementationReceiver - Interface in neureka.backend.api.ini
-
- in(Supplier<R>) - Method in interface neureka.devices.Device.In
-
- increment() - Method in class neureka.devices.ReferenceCounter
-
- increment(int[], int[]) - Static method in class neureka.ndim.config.NDConfiguration.Utility
-
- increment() - Method in interface neureka.ndim.iterator.NDIterator
-
- increment() - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
- increment() - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
- increment() - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
- increment() - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
- increment() - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
- increment() - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
- increment() - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
- increment() - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
- increment() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
- increment() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
-
- incrementUsageCount() - Method in class neureka.devices.AbstractDeviceData
-
- incrementUsageCount() - Method in interface neureka.devices.DeviceData
-
- incrementVersion(ExecutionCall<?>) - Method in interface neureka.MutateTensor
-
This method is responsible for incrementing
the "_version" field variable which represents the version of the data of this tensor.
- indent(int) - Static method in class neureka.view.NdaAsString.Util
-
- index() - Method in class neureka.math.implementations.FunctionInput
-
- indexOfIndex(int) - Method in interface neureka.ndim.config.NDConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
Use this to calculate the true index for an element in the data array (data array index)
based on a provided "virtual index", or "value array index".
- indexOfIndex(int) - Method in interface neureka.ndim.NDimensional
-
This is a convenience method identical to ndArray.getNDConf().indexOfIndex(i)
.
- indexOfIndices(int[]) - Method in interface neureka.ndim.config.NDConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int) - Method in class neureka.ndim.config.types.D1C
-
- indexOfIndices(int, int) - Method in class neureka.ndim.config.types.D2C
-
- indexOfIndices(int, int, int) - Method in class neureka.ndim.config.types.D3C
-
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int, int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int, int, int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int, int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int, int, int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int, int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int, int, int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int[]) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
The following method calculates the true index for an element in the data array
based on a provided index array.
- indexOfIndices(int[]) - Method in interface neureka.ndim.NDimensional
-
This is a convenience method identical to ndArray.getNDConf().indexOfIndices(indices)
.
- INDICES_MAPPER_ID - Static variable in class neureka.backend.main.operations.linear.internal.opencl.CLReduce
-
- indicesMap() - Method in interface neureka.ndim.config.NDConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in interface neureka.ndim.config.NDConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
- indicesMap() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
If one wants to for example access the fourth last item of all items
within a tensor based on a scalar index
x then the
NDConfiguration.indicesMap()
is needed as a basis for translating said scalar index
x to an array of indices
for every axis of the tensor represented by this
NDConfiguration
.
- indicesMap(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
This method receives an axis index and return the
indices mapping value of said axis to enable readable access to the indices map
of this configuration.
- indicesMap() - Method in interface neureka.ndim.NDimensional
-
- indicesOfIndex(int) - Method in interface neureka.ndim.config.NDConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
The following method calculates the axis indices for an element in the nd-array array
based on a provided "virtual index".
- indicesOfIndex(int) - Method in interface neureka.ndim.NDimensional
-
This is a convenience method identical to ndArray.getNDConf().IndicesOfIndex(i)
.
- init(int, int[]) - Method in interface neureka.ndim.Filler
-
- initialScramble(long) - Static method in class neureka.backend.main.implementations.elementwise.CPURandomization
-
- input(int) - Method in class neureka.backend.api.Call
-
- input(Class<V>, int) - Method in class neureka.backend.api.Call
-
- inputIndex() - Method in class neureka.autograd.ADTarget
-
- inputs() - Method in class neureka.backend.api.Call
-
- INSTANCE - Static variable in interface neureka.devices.DeviceCleaner
-
- intoRange(int, int) - Method in interface neureka.devices.Device.Writer
-
Writes whatever kind of data was previously specified, to the tensors'
data into the range targeted by the provided start
and limit
.
- intStream(int, int) - Static method in class neureka.common.utility.DataConverter.Utility
-
Use this to create a range based IntStream
which is only parallel if the provided threshold
smaller than the provided workload size.
- intToBigInteger(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- intToByte(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- intToDouble(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- intToFloat(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- intToLong(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- intToShort(int[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- invert(int[]) - Static method in class neureka.backend.main.operations.other.Permute
-
- invoke(Supplier<T>) - Method in class neureka.backend.api.BackendContext.Runner
-
- invoke(double, double) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(float, float) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(int, int) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(long, long) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(byte, byte) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(short, short) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(boolean, boolean) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(char, char) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(Object, Object) - Method in interface neureka.backend.main.implementations.fun.api.CPUBiFun
-
- invoke(double) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(float) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(int) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(long) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(byte) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(short) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(boolean) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(char) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(Object) - Method in interface neureka.backend.main.implementations.fun.api.CPUFun
-
- invoke(double[], int, double, double[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.AXPY
-
- invoke(float[], int, float, float[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.AXPY
-
- invoke(double[], int, double[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.DOT
-
- invoke(float[], int, float[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.DOT
-
- invoke(long[], int, long[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.DOT
-
- invoke(int[], int, int[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.DOT
-
- invoke(float[], float[], int, float[]) - Method in interface neureka.backend.main.operations.linear.internal.blas.GEMM.VectorOperationF32
-
- invoke(double[], double[], int, double[]) - Method in interface neureka.backend.main.operations.linear.internal.blas.GEMM.VectorOperationF64
-
- invoke(long[], int, long, long[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.IAXPY
-
- invoke(int[], int, int, int[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.IAXPY
-
- invoke(long[], int, long[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.IDOT
-
- invoke(int[], int, int[], int, int, int) - Static method in class neureka.backend.main.operations.linear.internal.blas.IDOT
-
- invoke(int[], int[], int, int[]) - Method in interface neureka.backend.main.operations.linear.internal.blas.IGEMM.VectorOperationI32
-
- invoke(long[], long[], int, long[]) - Method in interface neureka.backend.main.operations.linear.internal.blas.IGEMM.VectorOperationI64
-
- invoke(ExecutorService, int, int, int) - Method in class neureka.devices.host.concurrent.WorkScheduler
-
Synchronous execution - wait until it's finished.
- invoke(Tensor<T>...) - Method in interface neureka.math.Function.Callable
-
- invoke(double) - Method in interface neureka.math.Function
-
Invokes this
Function
with the provided scalar as a single input and returns the scalar result.
- invoke(double[], int) - Method in interface neureka.math.Function
-
Invokes this
Function
with the provided array of inputs ad an index for input dependent indexing.
- invoke(double...) - Method in interface neureka.math.Function
-
Invokes this
Function
with the provided array of inputs.
- invoke(Call.Builder<T, D>) - Method in interface neureka.math.Function
-
Use this to pass more context information for execution of input tensors.
- invoke(Args, Tensor<T>...) - Method in interface neureka.math.Function
-
Use this to call this
Function
alongside with some additional meta-arguments
which will be passed to the underlying
Operation
(s).
- invoke(Tensor<T>) - Method in interface neureka.math.Function
-
This method is functionally identically to
Function.call(Tensor)
, however it is best used
in Kotlin, where one can omit the function name entirely and call this
Function
directly!
- invoke(List<Tensor<T>>) - Method in interface neureka.math.Function
-
This method is functionally identically to
Function.call(List)
, however it is best used
in Kotlin, where one can omit the function name entirely and call this
Function
directly!
- invoke(Tensor<T>[], int) - Method in interface neureka.math.Function
-
This method is functionally identically to
Function.call(Tensor[], int)
, however it is best used
in Kotlin, where one can omit the function name entirely and call this
Function
directly!
- invoke(Tensor<T>...) - Method in interface neureka.math.Function
-
This method is functionally identically to
Function.call(Tensor[])
, however it is best used
in Kotlin, where one can omit the function name entirely and call this
Function
directly!
- is(Class<?>) - Method in interface neureka.Tensor
-
This method compares the passed class with the underlying data-type of this NDArray.
- isAnOperation(String) - Static method in class neureka.math.parsing.ParseUtil
-
- isApplyingGradientWhenRequested() - Method in class neureka.Neureka.Settings.AutoGrad
-
Gradients will only be applied if requested.
- isApplyingGradientWhenTensorIsUsed() - Method in class neureka.Neureka.Settings.AutoGrad
-
Gradients will automatically be applied (or JITed) to tensors as soon as
they are being used for calculation (
GraphNode
instantiation).
- isAutoConvertToFloat() - Method in class neureka.backend.ocl.CLSettings
-
- isBranch() - Method in interface neureka.Tensor
-
Tensors which are used or produced by the autograd system will have a
GraphNode
component attached to them.
- isCase(Tensor<V>) - Method in interface neureka.Tensor
-
This method name translates to the "in" keyword in Groovy!
The same is true for the "contains" method in Kotlin.
- isCompact() - Method in interface neureka.ndim.config.NDConfiguration
-
NDConfiguration
instance where this flag is true
will most likely not be slices because they have no offset (all 0)
and a compact spread / step array (all 1).
- isCompatible(NDConfiguration.Layout) - Method in enum neureka.ndim.config.NDConfiguration.Layout
-
- isDeleted() - Method in interface neureka.Tensor
-
- isDeletingIntermediateTensors() - Method in class neureka.Neureka.Settings.Debug
-
Function
instances will produce hidden intermediate results
when executing an array of inputs.
- isDifferentiable() - Method in interface neureka.backend.api.Operation
-
Deprecated.
- isDifferentiable() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- isDifferentiable(boolean) - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- isDoingAD() - Method in interface neureka.math.Function
-
Only branch
Function
s can do autograd / 'Auto-Differentiation', meaning functions
whose
Function.isFlat()
flag is set to false!
- isDoingAD() - Method in class neureka.math.implementations.FunctionConstant
-
- isDoingAD() - Method in class neureka.math.implementations.FunctionInput
-
- isDoingAD() - Method in class neureka.math.implementations.FunctionNode
-
- isDoingAD() - Method in class neureka.math.implementations.FunctionVariable
-
- isDone() - Method in class neureka.autograd.JITProp
-
- isEmpty() - Method in class neureka.devices.AbstractBaseDevice
-
A device is empty if there are no tensors stored on it.
- isEmpty() - Method in interface neureka.devices.Storage
-
- isEmpty() - Method in interface neureka.Tensor
-
A tensor is empty if it's
Data
storage is null.
- isFirstColIsIndex() - Method in class neureka.devices.file.CSVHandle
-
- isFirstRowIsLabels() - Method in class neureka.devices.file.CSVHandle
-
- isFlat() - Method in interface neureka.math.Function
-
- isFlat() - Method in class neureka.math.implementations.FunctionConstant
-
- isFlat() - Method in class neureka.math.implementations.FunctionInput
-
- isFlat() - Method in class neureka.math.implementations.FunctionNode
-
- isFlat() - Method in class neureka.math.implementations.FunctionVariable
-
- isFullSlice() - Method in interface neureka.Nda
-
If this nd-array is a full slice of a parent nd-array then this method will yield true.
- isGraphLeave() - Method in class neureka.autograd.GraphNode
-
- isIndexer() - Method in interface neureka.backend.api.Operation
-
This boolean property tell the
Function
implementations that this
Operation
ought to be viewed as something to be indexed.
- isIndexer() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- isIndexer(boolean) - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- isInline() - Method in interface neureka.backend.api.Operation
-
This flag indicates that the implementation of this
Operation
performs an operation which modifies the inputs to that operation.
- isInline() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- isInline(boolean) - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- isIntermediate() - Method in interface neureka.Tensor
-
Intermediate tensors are internal non-user tensors which may be eligible
for deletion when further consumed by a
Function
.
- isKeepingDerivativeTargetPayloads() - Method in class neureka.Neureka.Settings.Debug
-
Every derivative is calculated with respect to some graph node.
- isL2Specified() - Method in class neureka.devices.host.machine.Hardware
-
- isL3Specified() - Method in class neureka.devices.host.machine.Hardware
-
- isLeave() - Method in class neureka.autograd.GraphNode
-
This node (and the corresponding tensor) was not created by a function! (it's a leave tensor)
- isLeave() - Method in interface neureka.Tensor
-
Tensors which are used or produced by the autograd system will have a
GraphNode
component attached to them.
- isLocked() - Method in class neureka.Neureka.Settings
-
Locked settings can only be read but not written to.
- isOnlyUsingDefaultNDConfiguration() - Method in class neureka.Neureka.Settings.NDim
-
This flag determines which
NDConfiguration
implementations
should be used for nd-arrays/tensors.
- isOperator() - Method in interface neureka.backend.api.Operation
-
An operator is an alternative to a function like "sum()" or "prod()".
- isOperator() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- isOperator(boolean) - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- isOutsourced() - Method in interface neureka.Tensor
-
Outsourced means that the tensor is stored on a
Device
implementation instance which is not the
CPU
.
- isPartialSlice() - Method in interface neureka.Nda
-
If this nd-array is a partial slice of a parent nd-array then this method will yield true.
- isPartialSlice() - Method in interface neureka.Tensor
-
If this nd-array is a partial slice of a parent nd-array then this method will yield true.
- isPreventingInlineOperations() - Method in class neureka.Neureka.Settings.AutoGrad
-
Inline operations are operations where the data of a tensor passed into an operation
is being modified.
- isReliesOnJustInTimeProp() - Method in class neureka.autograd.GraphNode
-
This flag is used for a performance optimization feature namely 'Just In Time Propagation'.
- isRetainingPendingErrorForJITProp() - Method in class neureka.Neureka.Settings.AutoGrad
-
This flag enables an optimization technique which only propagates error values to
gradients if needed by a tensor (the tensor is used again) and otherwise accumulate them
at divergent differentiation paths within the computation graph.
If the flag is set to true
then error values will accumulate at such junction nodes.
- isShallowCopy() - Method in interface neureka.Nda
-
If this nd-array is a shallow copy of a parent nd-array then this method will yield true.
- isShallowCopy() - Method in interface neureka.Tensor
-
If this nd-array is a shallow copy of a parent nd-array then this method will yield true.
- isSimple() - Method in interface neureka.ndim.config.NDConfiguration
-
The boolean returned by this method simply reports
if this configuration is the most basic form of configuration
possible for the given shape represented by this instance.
- isSlice() - Method in interface neureka.Nda
-
If this nd-array is a slice of a parent nd-array then this method will yield true.
- isSlice() - Method in interface neureka.Tensor
-
If this nd-array is a slice of a parent nd-array then this method will yield true.
- isSliceParent() - Method in interface neureka.Nda
-
If slices have been derived from this nd-array then it is a "slice parent".
- isSliceParent() - Method in interface neureka.Tensor
-
If slices have been derived from this nd-array then it is a "slice parent".
- isSuitableFor(ExecutionCall<? extends Device<?>>) - Method in interface neureka.backend.api.fun.SuitabilityPredicate
-
When an
ExecutionCall
instance has been formed then it will be routed by
the given
Operation
instance to their components, namely :
Algorithm
instances !
The ability to decide which algorithm is suitable for a given
ExecutionCall
instance
is being granted by implementations of the following method.
- isSuitableFor(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
-
- isSuitableFor(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
-
- isSuitableFor(ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
-
- isUndefined() - Method in interface neureka.Tensor
-
A tensor is "undefined" if it has either no
NDConfiguration
implementation instance
or this instance does not have a shape set for this
Tensor
which is needed for
a tensor to also have a rank and dimensionality...
- isUsedAsDerivative() - Method in class neureka.autograd.GraphNode
-
The chain-rule states that the derivative of f(x) = h(g(x)) with respect to x is: g'(x) * h'(g(x))
An example would be:
f(x) = ((x*y)*z)
f'(x) = (1*y) * (1*z) = z*y
The values z,y or z*y must not be deleted as they are needed for back-propagation!
- isValid() - Method in class neureka.backend.api.Call.Validator
-
- isVirtual() - Method in interface neureka.ndim.config.NDConfiguration
-
- isVirtual() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
- isVirtual() - Method in interface neureka.Tensor
-
A Virtual tensor is a tensor whose underlying data array is of size 1, holding only a single value.
- isWronglyIntermediate() - Method in class neureka.backend.main.memory.MemValidator
-
- isWronglyNonIntermediate() - Method in class neureka.backend.main.memory.MemValidator
-
- item(int) - Method in interface neureka.Nda
-
The following method returns a single item within this nd-array
targeted by the provided integer index.
- item(int...) - Method in interface neureka.Nda
-
This method returns a raw value item within this nd-array
targeted by an index array which is expected to hold an index for
every dimension of the shape of this nd-array.
- item() - Method in interface neureka.Nda
-
- items() - Method in interface neureka.Nda
-
- itemType() - Method in interface neureka.Nda
-
- iterator() - Method in interface neureka.Shape
-
- IterByOrIterFromOrAll<V> - Interface in neureka.fluent.building.states
-
- IterByOrIterFromOrAllTensor<V> - Interface in neureka.fluent.building.states
-
- name() - Method in class neureka.devices.opencl.OpenCLDevice
-
- Nda<V> - Interface in neureka
-
Nda
, which is an abbreviation of
'N-Dimensional-Array', represents
a multidimensional, homogeneously filled fixed-size array of items.
- Nda.Item<V> - Interface in neureka
-
Instances of this are being returned by the
Nda.at(int...)
method,
and they allow you to get individual nd-array items
- NdaAsString - Class in neureka.view
-
This class is in essence a simple wrapper class for a tensor and a StringBuilder
Methods in this class use the builder in order to construct a String representation
for said tensor.
- NdaAsString.Builder - Interface in neureka.view
-
A builder interface providing multiple different options for building
a
NdaAsString
instance in a fluent way.
- NdaAsString.Util - Class in neureka.view
-
This class is a simple utility class which contains
a collection of static and stateless methods containing
useful functionalities for tensor stringification.
- NdaBuilder<V> - Class in neureka.fluent.building
-
This is the implementation of the fluent builder API for creating
Nda
/
Tensor
instances.
- NdaBuilder(Class<V>) - Constructor for class neureka.fluent.building.NdaBuilder
-
- ndArrays(Consumer<NDPrintSettings>) - Method in class neureka.Neureka.Settings.View
-
This allows you to provide a lambda to configure how tensors should be
converted to String
instances.
- NDConfiguration - Interface in neureka.ndim.config
-
This interface represents the access pattern configuration for the data array of a tensor.
- NDConfiguration.IndexToIndexFunction - Interface in neureka.ndim.config
-
Implementations of this are produced and returned by the
NDConfiguration.getIndexToIndexAccessPattern()
and their purpose is to translate the item index of a tensor to the index of the
item within the underlying data array of said tensor.
- NDConfiguration.Layout - Enum in neureka.ndim.config
-
Types of common data layouts:
ROW_MAJOR
- NDConfiguration.Utility - Class in neureka.ndim.config
-
This utility class provides static methods which are helpful
for nd-configuration related operations like reshaping,
incrementing or decrementing index arrays...
- NDConstructor - Interface in neureka.ndim
-
- NDConvolution - Class in neureka.backend.main.algorithms
-
- NDConvolution() - Constructor for class neureka.backend.main.algorithms.NDConvolution
-
- NDFrame<V> - Class in neureka.framing
-
Instances of this class are components of tensors, which store aliases for the indices of the tensor.
- NDFrame(List<List<Object>>, Tensor<V>, String) - Constructor for class neureka.framing.NDFrame
-
- NDFrame(Tensor<V>, String) - Constructor for class neureka.framing.NDFrame
-
- NDFrame(Map<Object, List<Object>>, Tensor<V>, String) - Constructor for class neureka.framing.NDFrame
-
- ndim() - Method in class neureka.Neureka.Settings
-
- ndim(Object) - Method in class neureka.Neureka.Settings
-
This allows you to configure Neureka using a Groovy DSL.
- NDim() - Constructor for class neureka.Neureka.Settings.NDim
-
- NDimensional - Interface in neureka.ndim
-
This interface defines the most essential methods
of the nd-array/tensor API, which describe them
with respect to their dimensionality.
- NDIterator - Interface in neureka.ndim.iterator
-
An
NDIterator
is used to iterate over n-dimensional arrays.
- NDIterator.NonVirtual - Enum in neureka.ndim.iterator
-
- NDPrintSettings - Class in neureka.view
-
This is simply a mutable container for configuring how
Tensor
instances ought to be converted to
String
s.
- NDPrintSettings(Supplier<Boolean>) - Constructor for class neureka.view.NDPrintSettings
-
- NDTrait - Enum in neureka.ndim.config
-
- NDUtil - Class in neureka.ndim
-
Static utility methods for the NDArray.
- NDUtil() - Constructor for class neureka.ndim.NDUtil
-
- neg() - Method in class neureka.math.Functions
-
- neg() - Method in interface neureka.Tensor
-
This method is a functionally identical to the following alternatives:
- negative() - Method in interface neureka.Tensor
-
- neureka - package neureka
-
- Neureka - Class in neureka
-
- neureka.autograd - package neureka.autograd
-
- neureka.backend.api - package neureka.backend.api
-
- neureka.backend.api.fun - package neureka.backend.api.fun
-
- neureka.backend.api.ini - package neureka.backend.api.ini
-
- neureka.backend.api.template.algorithms - package neureka.backend.api.template.algorithms
-
- neureka.backend.api.template.implementations - package neureka.backend.api.template.implementations
-
- neureka.backend.api.template.operations - package neureka.backend.api.template.operations
-
- neureka.backend.cpu - package neureka.backend.cpu
-
- neureka.backend.main.algorithms - package neureka.backend.main.algorithms
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.algorithms.internal - package neureka.backend.main.algorithms.internal
-
- neureka.backend.main.implementations - package neureka.backend.main.implementations
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.implementations.broadcast - package neureka.backend.main.implementations.broadcast
-
- neureka.backend.main.implementations.convolution - package neureka.backend.main.implementations.convolution
-
- neureka.backend.main.implementations.elementwise - package neureka.backend.main.implementations.elementwise
-
- neureka.backend.main.implementations.fun - package neureka.backend.main.implementations.fun
-
- neureka.backend.main.implementations.fun.api - package neureka.backend.main.implementations.fun.api
-
- neureka.backend.main.implementations.linear - package neureka.backend.main.implementations.linear
-
- neureka.backend.main.implementations.matmul - package neureka.backend.main.implementations.matmul
-
- neureka.backend.main.implementations.scalar - package neureka.backend.main.implementations.scalar
-
- neureka.backend.main.internal - package neureka.backend.main.internal
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.memory - package neureka.backend.main.memory
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.operations - package neureka.backend.main.operations
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.operations.functions - package neureka.backend.main.operations.functions
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.operations.indexer - package neureka.backend.main.operations.indexer
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.operations.linear - package neureka.backend.main.operations.linear
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.operations.linear.internal.blas - package neureka.backend.main.operations.linear.internal.blas
-
Everything in this package should be considered library-private!
DO NOT USE CLASSES INSIDE THIS PACKAGE!
- neureka.backend.main.operations.linear.internal.opencl - package neureka.backend.main.operations.linear.internal.opencl
-
- neureka.backend.main.operations.operator - package neureka.backend.main.operations.operator
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.operations.other - package neureka.backend.main.operations.other
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.backend.main.operations.other.internal - package neureka.backend.main.operations.other.internal
-
- neureka.backend.ocl - package neureka.backend.ocl
-
- neureka.common.composition - package neureka.common.composition
-
- neureka.common.utility - package neureka.common.utility
-
- neureka.devices - package neureka.devices
-
- neureka.devices.file - package neureka.devices.file
-
- neureka.devices.host - package neureka.devices.host
-
- neureka.devices.host.concurrent - package neureka.devices.host.concurrent
-
Everything in this package should be considered library-private!
DO NOT USE CLASSES INSIDE THIS PACKAGE!
- neureka.devices.host.machine - package neureka.devices.host.machine
-
Everything in this package should be considered library-private!
DO NOT USE CLASSES INSIDE THIS PACKAGE!
- neureka.devices.opencl - package neureka.devices.opencl
-
- neureka.devices.opencl.utility - package neureka.devices.opencl.utility
-
- neureka.dtype - package neureka.dtype
-
- neureka.dtype.custom - package neureka.dtype.custom
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.fluent.building - package neureka.fluent.building
-
- neureka.fluent.building.states - package neureka.fluent.building.states
-
- neureka.fluent.slicing - package neureka.fluent.slicing
-
- neureka.fluent.slicing.states - package neureka.fluent.slicing.states
-
- neureka.framing - package neureka.framing
-
- neureka.framing.fluent - package neureka.framing.fluent
-
- neureka.math - package neureka.math
-
- neureka.math.args - package neureka.math.args
-
- neureka.math.implementations - package neureka.math.implementations
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.math.parsing - package neureka.math.parsing
-
Everything in this package should be considered library-private!
DO NOT DEPEND ON CLASSES INSIDE THIS PACKAGE!
Code inside this package or any sub-packages might change frequently...
- neureka.ndim - package neureka.ndim
-
- neureka.ndim.config - package neureka.ndim.config
-
- neureka.ndim.config.types - package neureka.ndim.config.types
-
- neureka.ndim.config.types.permuted - package neureka.ndim.config.types.permuted
-
- neureka.ndim.config.types.simple - package neureka.ndim.config.types.simple
-
- neureka.ndim.config.types.sliced - package neureka.ndim.config.types.sliced
-
- neureka.ndim.config.types.views - package neureka.ndim.config.types.views
-
- neureka.ndim.config.types.views.virtual - package neureka.ndim.config.types.views.virtual
-
- neureka.ndim.iterator - package neureka.ndim.iterator
-
- neureka.ndim.iterator.types.permuted - package neureka.ndim.iterator.types.permuted
-
- neureka.ndim.iterator.types.simple - package neureka.ndim.iterator.types.simple
-
- neureka.ndim.iterator.types.sliced - package neureka.ndim.iterator.types.sliced
-
- neureka.ndim.iterator.types.virtual - package neureka.ndim.iterator.types.virtual
-
- neureka.optimization - package neureka.optimization
-
- neureka.optimization.implementations - package neureka.optimization.implementations
-
- Neureka.Settings - Class in neureka
-
This class hosts the settings of the
Neureka
instance which will be used throughout the library.
- Neureka.Settings.AutoGrad - Class in neureka
-
This class contains settings which are related to the automatic differentiation of tensors.
- Neureka.Settings.Debug - Class in neureka
-
- Neureka.Settings.DType - Class in neureka
-
- Neureka.Settings.NDim - Class in neureka
-
Settings for configuring the access pattern of nd-arrays/tensors.
- Neureka.Settings.View - Class in neureka
-
Settings for configuring how objects should be converted to String
representations.
- Neureka.Utility - Class in neureka
-
- neureka.view - package neureka.view
-
- newChildToParent(Tensor<T>) - Static method in class neureka.framing.Relation
-
- newInstance() - Static method in interface neureka.Tensor
-
This static factory method creates and return a completely empty and undefined tensor
which is void of any contents and meaning.
- newParentToChildren() - Static method in class neureka.framing.Relation
-
- newReshaped(int[]) - Method in class neureka.ndim.config.AbstractNDC
-
- newReshaped(int[]) - Method in interface neureka.ndim.config.NDConfiguration
-
This method enables reshaping for
NDConfiguration
implementation instances.
- newStridesFor(int[]) - Method in enum neureka.ndim.config.NDConfiguration.Layout
-
- newTensorLike(Tensor<V>, double) - Static method in class neureka.backend.main.operations.ElemWiseUtil
-
- newTensorLike(Class<V>, Shape, boolean, Device<Object>, double) - Static method in class neureka.backend.main.operations.ElemWiseUtil
-
- node() - Method in class neureka.autograd.ADTarget
-
- none() - Static method in interface neureka.Data
-
This is a static factory method which returns a
Data
object
which does not contain any data.
- none(Predicate<V>) - Method in interface neureka.Nda
-
Iterates over every element of this nd-array, and checks whether none
of the elements match the provided lambda.
- none() - Static method in interface neureka.ndim.config.NDConfiguration
-
- NOT_GOOD - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
-
- noteFinished(GraphNode<V>) - Method in class neureka.autograd.JITProp
-
- nullArgCheck(T, String, Class<?>, String...) - Static method in class neureka.common.utility.LogUtil
-
- numberOfArgs() - Method in interface neureka.math.Function
-
- numberOfBytes() - Method in class neureka.dtype.custom.F32
-
- numberOfBytes() - Method in class neureka.dtype.custom.F64
-
- numberOfBytes() - Method in class neureka.dtype.custom.I16
-
- numberOfBytes() - Method in class neureka.dtype.custom.I32
-
- numberOfBytes() - Method in class neureka.dtype.custom.I64
-
- numberOfBytes() - Method in class neureka.dtype.custom.I8
-
- numberOfBytes() - Method in class neureka.dtype.custom.UI16
-
- numberOfBytes() - Method in class neureka.dtype.custom.UI32
-
- numberOfBytes() - Method in class neureka.dtype.custom.UI64
-
- numberOfBytes() - Method in class neureka.dtype.custom.UI8
-
- numberOfBytes() - Method in interface neureka.dtype.NumericType
-
- numberOfChannels - Variable in enum neureka.Tensor.ImageType
-
- numberOfDataObjects() - Method in class neureka.devices.AbstractBaseDevice
-
- numberOfDataObjects() - Method in interface neureka.devices.Device
-
- numberOfOperationsWithin(List<String>) - Static method in class neureka.math.parsing.ParseUtil
-
- numberOfStored() - Method in class neureka.devices.AbstractBaseDevice
-
- numberOfStored() - Method in interface neureka.devices.Storage
-
- NumericType<TargetType,TargetArrayType,HolderType,HolderArrayType> - Interface in neureka.dtype
-
This interface enables "Polymorphic" utility by defining common functionalities
used for handling various numeric types.
- objBooleansToPrimBooleans(Boolean[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objBytesToPrimBytes(Byte[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objCharsToPrimChars(Character[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objDoublesToPrimDoubles(Double[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objectsToBytes(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objectsToDoubles(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objectsToFloats(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objectsToInts(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objectsToLongs(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objectsToShorts(Object[], int) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objFloatsToPrimFloats(Float[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objIntsToPrimInts(Integer[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objLongsToPrimLongs(Long[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- objShortsToPrimShorts(Short[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- of(ADAction) - Static method in interface neureka.autograd.ADAction
-
- of(Tensor<?>, ADAction) - Static method in interface neureka.autograd.ADAction
-
- of(Tensor<?>...) - Static method in class neureka.backend.api.ExecutionCall
-
Use this factory method to build
ExecutionCall
instances in a readable fashion.
- of(ImplementationReceiver) - Static method in class neureka.backend.api.ini.BackendRegistry
-
- of(Supplier<V>) - Static method in class neureka.backend.api.LazyRef
-
- of(Tensor<?>) - Static method in class neureka.backend.api.Result
-
- of(Class<V>, V...) - Static method in interface neureka.Data
-
- of(float...) - Static method in interface neureka.Data
-
- of(double...) - Static method in interface neureka.Data
-
- of(int...) - Static method in interface neureka.Data
-
- of(long...) - Static method in interface neureka.Data
-
- of(byte...) - Static method in interface neureka.Data
-
- of(short...) - Static method in interface neureka.Data
-
- of(boolean...) - Static method in interface neureka.Data
-
- of(char...) - Static method in interface neureka.Data
-
- of(String...) - Static method in interface neureka.Data
-
- of(Class<T>) - Static method in class neureka.dtype.DataType
-
- of(int) - Static method in class neureka.math.args.Arg.Axis
-
- of(Tensor<V>) - Static method in class neureka.math.args.Arg.Derivative
-
- of(int) - Static method in class neureka.math.args.Arg.DerivIdx
-
- of(int[]) - Static method in class neureka.math.args.Arg.Ends
-
- of(int...) - Static method in class neureka.math.args.Arg.Indices
-
- of(NDConfiguration.Layout) - Static method in class neureka.math.args.Arg.Layout
-
- of(int) - Static method in class neureka.math.args.Arg.MinRank
-
- of(int...) - Static method in class neureka.math.args.Arg.Offset
-
- of(String) - Static method in class neureka.math.args.Arg.Seed
-
- of(long) - Static method in class neureka.math.args.Arg.Seed
-
- of(int...) - Static method in class neureka.math.args.Arg.Shape
-
- of(int...) - Static method in class neureka.math.args.Arg.Stride
-
- of(Device<?>) - Static method in class neureka.math.args.Arg.TargetDevice
-
- of(int) - Static method in class neureka.math.args.Arg.VarIdx
-
- of(Arg<?>...) - Static method in class neureka.math.args.Args
-
- of(String) - Static method in interface neureka.math.Function
-
This static factory method will return
Function
instances
based on a provided mathematical
String
expression describing the function
using 'I[0]', 'I[1]', 'I[2]'...
- of(String, boolean) - Static method in interface neureka.math.Function
-
This static factory method will return
Function
instances
based on a provided mathematical
String
expression describing the function
using 'I[0]', 'I[1]', 'I[2]'...
- of(String, boolean) - Static method in class neureka.math.implementations.FunctionInput
-
- of(Class<V>) - Static method in interface neureka.Nda
-
This is the entry point to the fluent nd-array builder API for building
Nda
instances in a readable and type safe fashion.
- of(double) - Static method in interface neureka.Nda
-
- of(float...) - Static method in interface neureka.Nda
-
Constructs a vector of floats based on the provided array.
- of(double...) - Static method in interface neureka.Nda
-
Constructs a vector of doubles based on the provided array.
- of(byte...) - Static method in interface neureka.Nda
-
Constructs a vector of bytes based on the provided array.
- of(int...) - Static method in interface neureka.Nda
-
Constructs a vector of ints based on the provided array.
- of(long...) - Static method in interface neureka.Nda
-
Constructs a vector of longs based on the provided array.
- of(short...) - Static method in interface neureka.Nda
-
Constructs a vector of shorts based on the provided array.
- of(boolean...) - Static method in interface neureka.Nda
-
Constructs a vector of booleans based on the provided array.
- of(T...) - Static method in interface neureka.Nda
-
Constructs a vector of objects based on the provided array.
- of(Shape, double...) - Static method in interface neureka.Nda
-
Use this to construct and return a double based nd-array of the specified shape and initial values.
- of(Shape, float...) - Static method in interface neureka.Nda
-
Use this to construct and return a float based nd-array of the specified shape and initial values.
- of(Shape, byte...) - Static method in interface neureka.Nda
-
Use this to construct and return a byte based nd-array of the specified shape and initial values.
- of(Shape, int...) - Static method in interface neureka.Nda
-
Use this to construct and return a int based nd-array of the specified shape and initial values.
- of(Shape, long...) - Static method in interface neureka.Nda
-
Use this to construct and return a long based nd-array of the specified shape and initial values.
- of(Shape, short...) - Static method in interface neureka.Nda
-
Use this to construct and return a short based nd-array of the specified shape and initial values.
- of(Shape, boolean...) - Static method in interface neureka.Nda
-
Use this to construct and return a boolean based nd-array of the specified shape and initial values.
- of(Shape, T...) - Static method in interface neureka.Nda
-
Use this to construct and return an object based nd-array of the specified shape and initial values.
- of(Iterable<T>) - Static method in interface neureka.Nda
-
Constructs a vector of objects based on the provided iterable.
- of(List<T>) - Static method in interface neureka.Nda
-
Constructs a vector of objects based on the provided list.
- of(int[], int[], int[], int[], int[]) - Static method in interface neureka.ndim.config.NDConfiguration
-
- of(Tensor<?>) - Static method in interface neureka.ndim.iterator.NDIterator
-
Use this to instantiate
NDIterator
s optimized for the provided tensor.
- of(Tensor<?>, NDIterator.NonVirtual) - Static method in interface neureka.ndim.iterator.NDIterator
-
- of(NDConfiguration, NDIterator.NonVirtual) - Static method in interface neureka.ndim.iterator.NDIterator
-
- of(int[], int[], int[], int[], int[]) - Static method in interface neureka.ndim.NDConstructor
-
- of(NDConfiguration) - Static method in interface neureka.ndim.NDConstructor
-
- of(Shape) - Static method in interface neureka.ndim.NDConstructor
-
- of(int...) - Static method in interface neureka.ndim.NDConstructor
-
- of(Optimization<T>) - Static method in interface neureka.optimization.Optimizer
-
- of(List<? extends Number>) - Static method in interface neureka.Shape
-
This method is used to create a
Shape
instance from a list of numbers
whose integer values are used to describe the shape of a nd-array.
- of(Stream<? extends Number>) - Static method in interface neureka.Shape
-
This method is used to create a
Shape
instance from a stream of numbers
whose integer values are used to describe the shape of a nd-array.
- of(Iterable<? extends Number>) - Static method in interface neureka.Shape
-
This method is used to create a
Shape
instance from an iterable of numbers
whose integer values are used to describe the shape of a nd-array.
- of(int...) - Static method in interface neureka.Shape
-
This method is used to create a
Shape
instance from an array of integers.
- of(Tensor<T>, char, Tensor<T>) - Static method in interface neureka.Tensor
-
Use this to conveniently operate on 2 tensors.
- of(Tensor<T>, char, Tensor<T>, char, Tensor<T>) - Static method in interface neureka.Tensor
-
Use this to conveniently operate on 3 tensors.
- of(String, Tensor<T>, String) - Static method in interface neureka.Tensor
-
Use this to conveniently operate on a tensor.
- of(String, Tensor<T>, char, Tensor<T>, String) - Static method in interface neureka.Tensor
-
Use this to conveniently operate on 2 tensors.
- of(String, Tensor<T>, String, Tensor<T>, String, Tensor<T>, String) - Static method in interface neureka.Tensor
-
Use this to conveniently operate on 3 tensors.
- of(Object...) - Static method in interface neureka.Tensor
-
This static
Tensor
factory method tries to interpret the provided
arguments to create the instance the use might wants.
- of(Iterable<T>) - Static method in interface neureka.Tensor
-
Constructs a vector of objects based on the provided iterable.
- of(List<Integer>, T) - Static method in interface neureka.Tensor
-
This is a convenient factory method for creating
Tensor
instances for
values of type
T
based on a list of integers
defining a shape made up of axes sizes as well as a scalar value of type
T
which will fill out the data array spanned by the provided shape information.
- of(Shape, T) - Static method in interface neureka.Tensor
-
This is a convenient factory method for creating
Tensor
instances for
representing items of type
T
.
- of(List<? extends Number>, String) - Static method in interface neureka.Tensor
-
This factory method will create and return a
Tensor
instance
based on a list of
Number
instances whose rounded values will be interpreted as
the shape of this new
Tensor
instance and a seed which will serve
as a source of pseudo randomness to generate the values for the new instance.
- of(List<? extends Number>, List<V>) - Static method in interface neureka.Tensor
-
Creates a new
Tensor
instance based on a list of numbers representing the shape,
and a list of values representing the value of the resulting tensor.
- of(Shape, List<V>) - Static method in interface neureka.Tensor
-
Creates a new
Tensor
instance based on a shape tuple of numbers representing the nd-array shape,
and a list of items representing the value of the resulting tensor.
- of(List<Object>) - Static method in interface neureka.Tensor
-
This factory method will turn a list of values or nested lists of values into a
Tensor
instance with the corresponding rank and shape.
- of(Class<T>, List<Object>) - Static method in interface neureka.Tensor
-
This factory method will turn a list of values or nested lists of values into a
Tensor
instance with the corresponding rank and shape and whose values
are of the provided type.
- of(Class<V>) - Static method in interface neureka.Tensor
-
This is the entry point to the fluent tensor builder API for building
Tensor
instances in a readable and type safe fashion.
- of(double...) - Static method in interface neureka.Tensor
-
Constructs a vector of doubles based on the provided array.
- of(double) - Static method in interface neureka.Tensor
-
- of(float...) - Static method in interface neureka.Tensor
-
Constructs a vector of floats based on the provided array.
- of(float) - Static method in interface neureka.Tensor
-
- of(byte...) - Static method in interface neureka.Tensor
-
Constructs a vector of bytes based on the provided array.
- of(byte) - Static method in interface neureka.Tensor
-
- of(int...) - Static method in interface neureka.Tensor
-
Constructs a vector of ints based on the provided array.
- of(int) - Static method in interface neureka.Tensor
-
- of(long...) - Static method in interface neureka.Tensor
-
Constructs a vector of longs based on the provided array.
- of(long) - Static method in interface neureka.Tensor
-
- of(short...) - Static method in interface neureka.Tensor
-
Constructs a vector of shorts based on the provided array.
- of(short) - Static method in interface neureka.Tensor
-
- of(boolean...) - Static method in interface neureka.Tensor
-
Constructs a vector of booleans based on the provided array.
- of(Class<V>, Shape, Arg.Seed) - Static method in interface neureka.Tensor
-
Use this to construct and return a seeded tensor of the specified type.
- of(Shape, double) - Static method in interface neureka.Tensor
-
Use this to construct and return a homogeneously populated double tensor of the specified shape.
- of(Shape, double[]) - Static method in interface neureka.Tensor
-
Use this to construct and return a double tensor of the specified shape and initial values.
- of(Shape, int[]) - Static method in interface neureka.Tensor
-
Use this to construct and return an int tensor of the specified shape and initial values.
- of(Shape, byte[]) - Static method in interface neureka.Tensor
-
Use this to construct and return a byte tensor of the specified shape and initial values.
- of(Shape, long[]) - Static method in interface neureka.Tensor
-
Use this to construct and return a long tensor of the specified shape and initial values.
- of(Shape, short[]) - Static method in interface neureka.Tensor
-
Use this to construct and return a short tensor of the specified shape and initial values.
- of(Shape, float[]) - Static method in interface neureka.Tensor
-
Use this to construct and return a float tensor of the specified shape and initial values.
- of(Shape, float) - Static method in interface neureka.Tensor
-
Use this to construct and return a homogeneously populated float tensor of the specified shape.
- of(Shape, boolean[]) - Static method in interface neureka.Tensor
-
Use this to construct and return a boolean tensor of the specified shape and initial values.
- of(Shape, Data<V>) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified shape and data object.
This method is typically used like this:
- of(DataType<V>, Shape) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type and shape.
- of(Class<V>, Shape, Object) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type, shape and data object.
- of(Class<V>, List<Integer>, Object) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type, shape and data object.
- of(Class<V>, Shape, Number) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type, shape and number.
- of(Class<V>, List<Integer>, List<V>) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type, shape and data object.
- of(Class<V>, Shape, List<V>) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type, shape and list of items.
- of(DataType<V>, List<Integer>, List<V>) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type, shape and data object.
- of(DataType<V>, Shape, List<V>) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type, shape and a list of items.
- of(DataType<V>, Shape, Object) - Static method in interface neureka.Tensor
-
This factory method is among the most flexible and forgiving ways to create a
Tensor
instance.
- of(DataType<V>, Device<N>, Shape, Object) - Static method in interface neureka.Tensor
-
This factory method is among the most flexible and forgiving ways to create a
Tensor
instance.
- of(DataType<V>, NDConstructor, Data<V>) - Static method in interface neureka.Tensor
-
This factory method a raw tensor constructor which will not perform any type checking
or data conversion on the data provided to it.
- of(DataType<T>, List<Integer>, Filler<T>) - Static method in interface neureka.Tensor
-
This factory method allows the creation of tensors with an additional initialization
lambda for filling the underlying data array with desired values.
- of(DataType<T>, Shape, Filler<T>) - Static method in interface neureka.Tensor
-
This factory method allows the creation of tensors with an additional initialization
lambda for filling the underlying data array with desired values.
- of(Class<T>, Shape, Filler<T>) - Static method in interface neureka.Tensor
-
This factory method allows the creation of tensors with an additional initialization
lambda for filling the underlying data array with desired values.
- of(String, V...) - Static method in interface neureka.Tensor
-
This factory method allows for the creation and execution of
Function
instances
without actually instantiating them manually,
where the result will then be returned by this factory method.
- of(String, List<Tensor<V>>) - Static method in interface neureka.Tensor
-
This factory method allows for the creation and execution of
Function
instances
without actually instantiating them manually,
where the result will then be returned by this factory method.
- of(String, boolean, List<Tensor<V>>) - Static method in interface neureka.Tensor
-
This method takes a list of tensors and a String expression describing
operations which ought to be applied to the tensors in said list.
- of(String, Tensor<V>) - Static method in interface neureka.Tensor
-
This method takes a tensor and a String expression describing
operations which ought to be applied to said tensor.
- of(String, Tensor<V>...) - Static method in interface neureka.Tensor
-
This method takes an array of tensors and a String expression describing
operations which ought to be applied to the tensors in said array.
- of(String, boolean, Tensor<V>...) - Static method in interface neureka.Tensor
-
This method takes an array of tensors and a String expression describing
operations which ought to be applied to the tensors in said array.
- ofAny(Class<V>, Shape, Object) - Static method in interface neureka.Tensor
-
Use this to construct and return a tensor of the specified type, shape and data object.
- ofBigDecimals() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(BigDecimal.class)
used to build
Nda
s storing
BigDecimal
s.
- ofBooleans() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Boolean.class)
used to build
Nda
s storing
Boolean
s.
- ofBytes() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Byte.class)
used to build
Nda
s storing
Byte
s.
- ofBytes() - Static method in interface neureka.Tensor
-
This is a simple convenience method which is simply calling the
Tensor.of(Class)
method like so:
of(Byte.class)
.
- ofChars() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Character.class)
used to build
Nda
s storing
Character
s.
- ofDoubles() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Double.class)
used to build
Nda
s storing
Double
s.
- ofDoubles() - Static method in interface neureka.Tensor
-
This is a simple convenience method which is simply calling the
Tensor.of(Class)
method like so:
of(Double.class)
.
- ofFloats() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Float.class)
used to build
Nda
s storing
Float
s.
- ofFloats() - Static method in interface neureka.Tensor
-
This is a simple convenience method which is simply calling the
Tensor.of(Class)
method like so:
of(Float.class)
.
- offset() - Method in interface neureka.ndim.config.NDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in interface neureka.ndim.config.NDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
The offset is the position of a slice within the n-dimensional
data array of its parent tensor.
- offset() - Method in interface neureka.ndim.NDimensional
-
The offset is the position of a slice within the n-dimensional
data array of its parent array.
- ofGradient(Optimization<T>) - Static method in interface neureka.optimization.Optimizer
-
- ofInts() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Integer.class)
used to build
Nda
s storing
Integer
s.
- ofInts() - Static method in interface neureka.Tensor
-
This is a simple convenience method which is simply calling the
Tensor.of(Class)
method like so:
of(Integer.class)
.
- ofLongs() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Long.class)
used to build
Nda
s storing
Long
s.
- ofNumbers() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Number.class)
used to build
Nda
s storing
Number
s.
- ofObjects() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(Object.class)
used to build
Nda
s storing
Object
s.
- ofRandom(Class<V>, int...) - Static method in interface neureka.Tensor
-
This factory method produces a randomly populated tensor of the provided
type and shape using a hard coded default seed.
- ofShorts() - Static method in interface neureka.Nda
-
This is a
shortcut method for
Nda.of(Short.class)
used to build
Nda
s storing
Short
s.
- ofShorts() - Static method in interface neureka.Tensor
-
This is a simple convenience method which is simply calling the
Tensor.of(Class)
method like so:
of(Short.class)
.
- ofStrings() - Static method in interface neureka.Nda
-
This is a shortcut method for
Nda.of(String.class)
used to build
Nda
s storing
String
s.
- OKAY - Static variable in interface neureka.backend.api.fun.SuitabilityPredicate
-
- on(D) - Method in class neureka.backend.api.ExecutionCall.Builder
-
- on(Device<? super V>) - Method in class neureka.fluent.building.NdaBuilder
-
- on(Device<? super V>) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorOnDevice
-
Use this to specify the type onto which the tensor should be stored.
- OpenCLDevice - Class in neureka.devices.opencl
-
This class models OpenCL supporting accelerator hardware like GPUs or FPGAs
for storing tensors and executing operations on them.
- OpenCLDevice.Query - Class in neureka.devices.opencl
-
- OpenCLDevice.Type - Enum in neureka.devices.opencl
-
- OpenCLPlatform - Class in neureka.devices.opencl
-
This class models the OpenCL concept of platforms, which refer to device
vendors / or vendor OpenCL runtime drivers.
- OpenCLPlatform(cl_platform_id) - Constructor for class neureka.devices.opencl.OpenCLPlatform
-
- Operation - Interface in neureka.backend.api
-
This interface is part of the backend API, and it embodies the top layer of the 3 tier backend architecture.
- OperationBuilder - Class in neureka.backend.api.template.operations
-
This builder class builds instances of the
Operation
interface.
- OperationBuilder() - Constructor for class neureka.backend.api.template.operations.OperationBuilder
-
- OperationBuilder.Derivation - Interface in neureka.backend.api.template.operations
-
- OperationBuilder.Stringifier - Interface in neureka.backend.api.template.operations
-
- operationForF32(boolean, long, long) - Static method in class neureka.backend.main.operations.linear.internal.blas.GEMM
-
- operationForF64(boolean, long, long) - Static method in class neureka.backend.main.operations.linear.internal.blas.GEMM
-
- operationForI32(boolean, long, long) - Static method in class neureka.backend.main.operations.linear.internal.blas.IGEMM
-
- operationForI64(boolean, long, long) - Static method in class neureka.backend.main.operations.linear.internal.blas.IGEMM
-
- operationName() - Method in class neureka.backend.api.template.operations.AbstractOperation
-
Override this if you want your operation to have a string representation
with a custom prefix which is something other than the simple class name!
- operator(String) - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- Optimization<V> - Interface in neureka.optimization
-
- optimize() - Method in class neureka.devices.opencl.utility.CLFunctionCompiler
-
- optimize(Tensor<V>) - Method in class neureka.optimization.implementations.AdaGrad
-
- optimize(Tensor<V>) - Method in class neureka.optimization.implementations.ADAM
-
- optimize(Tensor<V>) - Method in class neureka.optimization.implementations.Momentum
-
- optimize(Tensor<V>) - Method in class neureka.optimization.implementations.RMSProp
-
- optimize(Tensor<V>) - Method in class neureka.optimization.implementations.SGD
-
- optimize(Tensor<V>) - Method in interface neureka.optimization.Optimization
-
- optimizedFunctionOf(Function, String) - Method in interface neureka.devices.Device
-
This method tries to allow this device to produce an optimized
Function
based on the provided function.
- optimizedOperationOf(Function, String) - Method in interface neureka.devices.Device
-
This method tries to allow this device to produce an optimized
Operation
based on the provided function.
- optimizedOperationOf(Function, String) - Method in class neureka.devices.file.FileDevice
-
- optimizedOperationOf(Function, String) - Method in class neureka.devices.host.CPU
-
- optimizedOperationOf(Function, String) - Method in class neureka.devices.opencl.OpenCLDevice
-
- Optimizer<V> - Interface in neureka.optimization
-
Optimizer
s are tensor components which implement the
Optimization
(functional)
interface applying various optimization algorithms to the gradients of tensors.
- OptimizerFactory - Interface in neureka.optimization
-
- orElse(T) - Method in interface neureka.backend.api.Call.Else
-
- orElse(V) - Method in interface neureka.Nda.Item
-
Get the value at the targeted position or return the provided default value if the item does not exist.
- orElseNull() - Method in interface neureka.Nda.Item
-
Get the value at the targeted position or return null
if the item does not exist.
- OS_MEMORY_PAGE_SIZE - Static variable in class neureka.devices.host.machine.Hardware
-
Practically all architectures/OS:s have a page size of 4k (one notable exception is Solaris/SPARC that
have 8k)
- owner() - Method in interface neureka.Data
-
- owner() - Method in class neureka.devices.AbstractDeviceData
-
- scalar(V) - Method in class neureka.fluent.building.NdaBuilder
-
- scalar(V) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVector
-
This method created and return a scalar
Tensor
instance
which wraps the provided value.
- scalar(V) - Method in interface neureka.fluent.building.states.WithShapeOrScalarOrVectorTensor
-
This method created and return a scalar
Tensor
instance
which wraps the provided value.
- ScalarAbsolute - Class in neureka.backend.main.implementations.fun
-
- ScalarAbsolute() - Constructor for class neureka.backend.main.implementations.fun.ScalarAbsolute
-
- ScalarAlgorithm - Class in neureka.backend.main.algorithms
-
- ScalarAlgorithm() - Constructor for class neureka.backend.main.algorithms.ScalarAlgorithm
-
- ScalarBroadcast - Class in neureka.backend.main.algorithms
-
- ScalarBroadcast(ScalarFun) - Constructor for class neureka.backend.main.algorithms.ScalarBroadcast
-
- ScalarCbrt - Class in neureka.backend.main.implementations.fun
-
- ScalarCbrt() - Constructor for class neureka.backend.main.implementations.fun.ScalarCbrt
-
- ScalarCosinus - Class in neureka.backend.main.implementations.fun
-
- ScalarCosinus() - Constructor for class neureka.backend.main.implementations.fun.ScalarCosinus
-
- ScalarExp - Class in neureka.backend.main.implementations.fun
-
- ScalarExp() - Constructor for class neureka.backend.main.implementations.fun.ScalarExp
-
- ScalarFun - Interface in neureka.backend.main.implementations.fun.api
-
- ScalarGaSU - Class in neureka.backend.main.implementations.fun
-
- ScalarGaSU() - Constructor for class neureka.backend.main.implementations.fun.ScalarGaSU
-
- ScalarGaTU - Class in neureka.backend.main.implementations.fun
-
- ScalarGaTU() - Constructor for class neureka.backend.main.implementations.fun.ScalarGaTU
-
- ScalarGaussian - Class in neureka.backend.main.implementations.fun
-
- ScalarGaussian() - Constructor for class neureka.backend.main.implementations.fun.ScalarGaussian
-
- ScalarGaussianFast - Class in neureka.backend.main.implementations.fun
-
- ScalarGaussianFast() - Constructor for class neureka.backend.main.implementations.fun.ScalarGaussianFast
-
- ScalarGeLU - Class in neureka.backend.main.implementations.fun
-
The GELU activation function is based on the standard Gaussian cumulative distribution function
and is defined as x Φ( x )
and implemented as x * sigmoid(x * 1.702)
.
- ScalarGeLU() - Constructor for class neureka.backend.main.implementations.fun.ScalarGeLU
-
- ScalarIdentity - Class in neureka.backend.main.implementations.fun
-
- ScalarIdentity() - Constructor for class neureka.backend.main.implementations.fun.ScalarIdentity
-
- ScalarLog10 - Class in neureka.backend.main.implementations.fun
-
- ScalarLog10() - Constructor for class neureka.backend.main.implementations.fun.ScalarLog10
-
- ScalarLogarithm - Class in neureka.backend.main.implementations.fun
-
- ScalarLogarithm() - Constructor for class neureka.backend.main.implementations.fun.ScalarLogarithm
-
- ScalarQuadratic - Class in neureka.backend.main.implementations.fun
-
- ScalarQuadratic() - Constructor for class neureka.backend.main.implementations.fun.ScalarQuadratic
-
- ScalarReLU - Class in neureka.backend.main.implementations.fun
-
- ScalarReLU() - Constructor for class neureka.backend.main.implementations.fun.ScalarReLU
-
- ScalarSeLU - Class in neureka.backend.main.implementations.fun
-
The Scaled Exponential Linear Unit, or SELU, is an activation
function that induces self-normalizing properties.
- ScalarSeLU() - Constructor for class neureka.backend.main.implementations.fun.ScalarSeLU
-
- ScalarSigmoid - Class in neureka.backend.main.implementations.fun
-
- ScalarSigmoid() - Constructor for class neureka.backend.main.implementations.fun.ScalarSigmoid
-
- ScalarSiLU - Class in neureka.backend.main.implementations.fun
-
The SiLu activation function, also known as the swish function, is defined as x * sigmoid(x)
.
- ScalarSiLU() - Constructor for class neureka.backend.main.implementations.fun.ScalarSiLU
-
- ScalarSinus - Class in neureka.backend.main.implementations.fun
-
- ScalarSinus() - Constructor for class neureka.backend.main.implementations.fun.ScalarSinus
-
- ScalarSoftplus - Class in neureka.backend.main.implementations.fun
-
SoftPlus is a smooth approximation to the ReLU function and can be used
to constrain the output of a machine to always be positive.
- ScalarSoftplus() - Constructor for class neureka.backend.main.implementations.fun.ScalarSoftplus
-
- ScalarSoftsign - Class in neureka.backend.main.implementations.fun
-
The softsign function, defined as
x / ( 1 + Math.abs( x ) )
,
is a computationally cheap 0 centered activation function
which rescales the inputs between -1 and 1, very much like the
ScalarTanh
function.
- ScalarSoftsign() - Constructor for class neureka.backend.main.implementations.fun.ScalarSoftsign
-
- ScalarSqrt - Class in neureka.backend.main.implementations.fun
-
- ScalarSqrt() - Constructor for class neureka.backend.main.implementations.fun.ScalarSqrt
-
- ScalarSumAlgorithm - Class in neureka.backend.main.algorithms
-
- ScalarSumAlgorithm() - Constructor for class neureka.backend.main.algorithms.ScalarSumAlgorithm
-
- ScalarTanh - Class in neureka.backend.main.implementations.fun
-
- ScalarTanh() - Constructor for class neureka.backend.main.implementations.fun.ScalarTanh
-
- ScalarTanhFast - Class in neureka.backend.main.implementations.fun
-
- ScalarTanhFast() - Constructor for class neureka.backend.main.implementations.fun.ScalarTanhFast
-
- SELU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- selu(double) - Static method in class neureka.backend.main.implementations.fun.ScalarSeLU
-
- SeLU - Class in neureka.backend.main.operations.functions
-
The Scaled Exponential Linear Unit, or SELU, is an activation
functions that induce self-normalizing properties.
- SeLU() - Constructor for class neureka.backend.main.operations.functions.SeLU
-
- selu() - Method in class neureka.math.Functions
-
The Scaled Exponential Linear Unit, or SELU, is an activation
functions that induce self-normalizing properties.
- sequential(int, CPU.RangeWorkload) - Method in class neureka.devices.host.CPU.JVMExecutor
-
This method will simply execute the provided
CPU.RangeWorkload
lambda sequentially
with 0 as the start index and
workloadSize
as the exclusive range.
- set(BackendExtension) - Method in class neureka.backend.api.BackendContext
-
- set(Class<? extends Operation>, Class<? extends A>, Function<LoadingContext, ImplementationFor<D>>) - Method in interface neureka.backend.api.ini.ReceiveForDevice
-
- set(Class<? extends DeviceAlgorithm>, Function<LoadingContext, ImplementationFor<D>>) - Method in interface neureka.backend.api.ini.ReceiveForOperation
-
- set(T) - Method in class neureka.common.composition.AbstractComponentOwner
-
This methods stores the passed component inside the component
collection of this class...
- set(T) - Method in interface neureka.common.composition.ComponentOwner
-
Use this to set a component.
- Set<V> - Interface in neureka.framing.fluent
-
- set(int) - Method in interface neureka.framing.fluent.Set
-
- set(V) - Method in interface neureka.MutateNda.Item
-
Set the value at the targeted position.
- set(int[], T) - Method in interface neureka.MutateNda
-
Use this to place a single item at a particular position within this nd-array!
- set(int, int, T) - Method in interface neureka.MutateNda
-
- set(int, int, int, T) - Method in interface neureka.MutateNda
-
- set(int, T) - Method in interface neureka.MutateNda
-
Individual entries for value items in this nd-array can be set
via this method.
- set(int[], T) - Method in interface neureka.MutateTensor
-
Use this to place a single item at a particular position within this nd-array!
- set(int, int, T) - Method in interface neureka.MutateTensor
- set(int, int, int, T) - Method in interface neureka.MutateTensor
- set(int, T) - Method in interface neureka.MutateTensor
-
Individual entries for value items in this nd-array can be set
via this method.
- set(int, int) - Method in interface neureka.ndim.iterator.NDIterator
-
- set(int[]) - Method in interface neureka.ndim.iterator.NDIterator
-
- set(int, int) - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
- set(int[]) - Method in class neureka.ndim.iterator.types.permuted.Permuted2DCIterator
- set(int, int) - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
- set(int[]) - Method in class neureka.ndim.iterator.types.permuted.Permuted3DCIterator
- set(int, int) - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
- set(int[]) - Method in class neureka.ndim.iterator.types.simple.Simple1DCIterator
- set(int, int) - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
- set(int[]) - Method in class neureka.ndim.iterator.types.simple.Simple2DCIterator
- set(int, int) - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
- set(int[]) - Method in class neureka.ndim.iterator.types.simple.Simple3DCIterator
- set(int, int) - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
- set(int[]) - Method in class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
- set(int, int) - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
- set(int[]) - Method in class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
- set(int, int) - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
- set(int[]) - Method in class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
- set(int, int) - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
-
- set(int[]) - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
-
- set(int, int) - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
-
- set(int[]) - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
-
- set(Neureka) - Static method in class neureka.Neureka
-
Neureka
is a thread local singleton.
- set(OptimizerFactory) - Method in interface neureka.Tensor
-
- setAlgorithm(Class<T>, T) - Method in interface neureka.backend.api.Operation
-
- setAlgorithm(T) - Method in interface neureka.backend.api.Operation
-
- setAlgorithm(Class<T>, T) - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- setAutoConvertToFloat(boolean) - Method in class neureka.backend.ocl.CLSettings
-
- setAutogradModeFor(ADSupportPredicate) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
-
- setAutogradModeFor(ADSupportPredicate) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
-
- setBackend(BackendContext) - Method in class neureka.Neureka
-
Use this method to attach a backend context (for operations)
to this thread local library context.
- setCallPreparation(ExecutionPreparation) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
-
- setCellSize(int) - Method in class neureka.view.NDPrintSettings
-
A cell size refers to the number of characters reserved to
the String
representation of a single element.
- setData(Data<T>) - Method in interface neureka.MutateTensor
-
At the heart of every tensor is the
Data
object, which holds the actual data array,
a sequence of values of the same type.
- setDataAt(int, T) - Method in interface neureka.MutateTensor
-
A tensor ought to have some way to selectively modify its underlying data array.
- setDefaultDataTypeClass(Class<?>) - Method in class neureka.Neureka.Settings.DType
-
The default data type is not relevant most of the time.
- setDerivation(OperationBuilder.Derivation) - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- setExecution(Execution) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
-
- setExecution(Execution) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
-
- setGradientApplyRequested(boolean) - Method in interface neureka.Tensor
-
This flag works alongside two autograd features which can be enabled inside the library settings.
- setHasDerivatives(boolean) - Method in class neureka.view.NDPrintSettings
-
- setHasGradient(boolean) - Method in class neureka.view.NDPrintSettings
-
- setHasRecursiveGraph(boolean) - Method in class neureka.view.NDPrintSettings
-
- setHasShape(boolean) - Method in class neureka.view.NDPrintSettings
-
- setHasSlimNumbers(boolean) - Method in class neureka.view.NDPrintSettings
-
- setHasValue(boolean) - Method in class neureka.view.NDPrintSettings
-
- setImplementationFor(Class<D>, I) - Method in interface neureka.backend.api.DeviceAlgorithm
-
Implementations of the
DeviceAlgorithm
interface ought to express a compositional design pattern.
- setImplementationFor(Class<D>, E) - Method in class neureka.backend.api.template.algorithms.AbstractDeviceAlgorithm
-
- setIndent(String) - Method in class neureka.view.NDPrintSettings
-
- setIndex(int) - Method in interface neureka.framing.fluent.AxisFrame.Set
-
- setIsApplyingGradientWhenRequested(boolean) - Method in class neureka.Neureka.Settings.AutoGrad
-
Gradients will only be applied if requested.
- setIsApplyingGradientWhenTensorIsUsed(boolean) - Method in class neureka.Neureka.Settings.AutoGrad
-
Gradients will automatically be applied (or JITed) to tensors as soon as
they are being used for calculation (
GraphNode
instantiation).
- setIsAutoConvertingExternalDataToJVMTypes(boolean) - Method in class neureka.Neureka.Settings.DType
-
This flag will determine if foreign data types will be converted into the next best fit (in terms of bits)
or if it should be converted into something that does not mess with the representation of the data.
- setIsCellBound(boolean) - Method in class neureka.view.NDPrintSettings
-
- setIsDeletingIntermediateTensors(boolean) - Method in class neureka.Neureka.Settings.Debug
-
Function
instances will produce hidden intermediate results
when executing an array of inputs.
- setIsIntermediate(boolean) - Method in interface neureka.MutateTensor
-
Intermediate tensors are internal non-user tensors which may be eligible
for deletion when further consumed by a
Function
.
- setIsKeepingDerivativeTargetPayloads(boolean) - Method in class neureka.Neureka.Settings.Debug
-
Every derivative is calculated with respect to some graph node.
- setIsLegacy(boolean) - Method in class neureka.view.NDPrintSettings
-
This flag determines the usage of bracket types,
where "[1x3]:(1, 2, 3)"
would be the legacy version
of "(1x3):[1, 2, 3]"
.
- setIsLocked(boolean) - Method in class neureka.Neureka.Settings
-
Can be used to lock or unlock the settings of the current thread-local
Neureka
instance.
- setIsMultiline(boolean) - Method in class neureka.view.NDPrintSettings
-
- setIsOnlyUsingDefaultNDConfiguration(boolean) - Method in class neureka.Neureka.Settings.NDim
-
Setting this flag determines which
NDConfiguration
implementations
should be used for nd-arrays/tensors.
- setIsPreventingInlineOperations(boolean) - Method in class neureka.Neureka.Settings.AutoGrad
-
Inline operations are operations where the data of a tensor passed into an operation
is being modified.
- setIsRetainingPendingErrorForJITProp(boolean) - Method in class neureka.Neureka.Settings.AutoGrad
-
This flag enables an optimization technique which only propagates error values to
gradients if needed by a tensor (the tensor is used again) and otherwise accumulate them
at divergent differentiation paths within the computation graph.
If the flag is set to true
then error values will accumulate at such junction nodes.
- setIsScientific(boolean) - Method in class neureka.view.NDPrintSettings
-
- setIsSuitableFor(SuitabilityPredicate) - Method in class neureka.backend.api.template.algorithms.AbstractFunAlgorithm
-
- setIsSuitableFor(SuitabilityPredicate) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
-
- setIsVirtual(boolean) - Method in interface neureka.MutateTensor
-
Virtualizing is the opposite to actualizing a tensor.
- setItemAt(int, T) - Method in interface neureka.MutateNda
-
An NDArray implementation ought to have some way to selectively modify its underlying value.
- setItemAt(int, T) - Method in interface neureka.MutateTensor
-
An NDArray implementation ought to have some way to selectively modify its underlying value.
- setItems(Object) - Method in interface neureka.MutateNda
-
This method will receive an object an try to interpret
it or its contents to be set as value for this nd-array.
- setItems(Object) - Method in interface neureka.MutateTensor
-
This method will receive an object an try to interpret
it or its contents to be set as value for this nd-array.
- setNDConf(NDConfiguration) - Method in interface neureka.MutateTensor
-
This method sets the NDConfiguration of this NDArray.
- setPostfix(String) - Method in class neureka.view.NDPrintSettings
-
- setPrefix(String) - Method in class neureka.view.NDPrintSettings
-
- setRowLimit(int) - Method in class neureka.view.NDPrintSettings
-
Very large tensors with a rank larger than 1 might take a lot
of vertical space when converted to a String
.
- setRqsGradient(boolean) - Method in interface neureka.Tensor
-
Setting this flag to true
will tell the autograd system to accumulate gradients at this tensor.
- setSupplyADActionFor(ADActionSupplier) - Method in class neureka.backend.api.template.algorithms.AbstractFunDeviceAlgorithm
-
This method receives a
ADActionSupplier
which will supply
ADAction
instances which can perform backward and forward auto differentiation.
- setter(At<Object, AxisFrame.Set<ValueType>>) - Method in class neureka.framing.fluent.AxisFrame.Builder
-
- settings() - Method in class neureka.Neureka
-
- settings(Object) - Method in class neureka.Neureka
-
This allows you to configure Neureka using a Groovy DSL.
- SettingsLoader - Class in neureka.common.utility
-
This class is a helper class for
Neureka
instances (Thread local singletons).
- SGD<V> - Class in neureka.optimization.implementations
-
Stochastic Gradient Descent is an iterative optimization technique
that uses the gradient of a weight variable to adjust said variable,
in order to reduce the error used to calculate said gradient.
- SGD - Static variable in interface neureka.optimization.Optimizer
-
- SGDFactory - Class in neureka.optimization.implementations
-
- SGDFactory() - Constructor for class neureka.optimization.implementations.SGDFactory
-
- shallowClone() - Method in interface neureka.Tensor
-
- shallowCopy() - Method in interface neureka.Nda
-
This creates a copy where the underlying data is still the same.
- shallowCopy() - Method in interface neureka.Tensor
-
This creates a copy where the underlying data is still the same.
- shape() - Method in interface neureka.ndim.config.NDConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in interface neureka.ndim.config.NDConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
This method receives an axis index and return the
size of the axis.
- shape() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
This method returns an array of axis sizes.
- shape(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
This method receives an axis index and return the
size of the axis.
- shape(int) - Method in interface neureka.ndim.iterator.NDIterator
-
- shape() - Method in interface neureka.ndim.iterator.NDIterator
-
- shape(int) - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
- shape() - Method in class neureka.ndim.iterator.types.sliced.SlicedNDIterator
- shape(int) - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
-
- shape() - Method in class neureka.ndim.iterator.types.virtual.VirtualNDIterator
-
- shape() - Method in interface neureka.ndim.NDimensional
-
- shape(int) - Method in interface neureka.ndim.NDimensional
-
This method receives an axis index and return the
size of the targeted axis / dimension.
- Shape - Interface in neureka
-
Basically a tuple of integers which is used to describe the shape of an array.
- shaped(int...) - Static method in interface neureka.Nda
-
Returns a
Collector
that accumulates the input elements into a
new
Nda
with the specified shape.
- shaped(int...) - Static method in interface neureka.Tensor
-
Returns a
Collector
that accumulates the input elements into a
new
Tensor
with the specified shape.
- shaped(Shape) - Static method in interface neureka.Tensor
-
Returns a
Collector
that accumulates the input elements into a
new
Tensor
with the specified shape.
- shapeOfCon(int[], int[]) - Static method in class neureka.backend.main.operations.ConvUtil
-
- shapeString(int[]) - Static method in class neureka.ndim.NDUtil
-
- shortToBigInteger(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- shortToByte(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- shortToDouble(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- shortToFloat(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- shortToInt(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- shortToLong(short[]) - Static method in class neureka.common.utility.DataConverter.Utility
-
- sig(double) - Static method in class neureka.backend.main.implementations.fun.ScalarSigmoid
-
- sig() - Method in interface neureka.Tensor
-
This method is a functionally identical to the following alternatives:
- SIGMOID - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- Sigmoid - Class in neureka.backend.main.operations.functions
-
- Sigmoid() - Constructor for class neureka.backend.main.operations.functions.Sigmoid
-
- sigmoid() - Method in class neureka.math.Functions
-
- sigmoid() - Method in interface neureka.Tensor
-
- signed() - Method in class neureka.dtype.custom.F32
-
- signed() - Method in class neureka.dtype.custom.F64
-
- signed() - Method in class neureka.dtype.custom.I16
-
- signed() - Method in class neureka.dtype.custom.I32
-
- signed() - Method in class neureka.dtype.custom.I64
-
- signed() - Method in class neureka.dtype.custom.I8
-
- signed() - Method in class neureka.dtype.custom.UI16
-
- signed() - Method in class neureka.dtype.custom.UI32
-
- signed() - Method in class neureka.dtype.custom.UI64
-
- signed() - Method in class neureka.dtype.custom.UI8
-
- signed() - Method in interface neureka.dtype.NumericType
-
This boolean value tells if the data-type represented
by concrete instances of implementations of this interface
is signed!
- SILU - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- silu(double) - Static method in class neureka.backend.main.implementations.fun.ScalarSiLU
-
- SiLU - Class in neureka.backend.main.operations.functions
-
The SiLu activation function, also known as the swish function, is defined as x * sigmoid(x)
.
- SiLU() - Constructor for class neureka.backend.main.operations.functions.SiLU
-
- silu() - Method in class neureka.math.Functions
-
The SiLu activation function, also known as the swish function, is defined as x * sigmoid(x)
.
- similarity(String, String) - Static method in class neureka.math.parsing.ParseUtil
-
This method estimates the similarity between 2 provided String
instances.
- Simple0DConfiguration - Class in neureka.ndim.config.types.simple
-
- Simple1DCIterator - Class in neureka.ndim.iterator.types.simple
-
- Simple1DCIterator(Simple1DConfiguration) - Constructor for class neureka.ndim.iterator.types.simple.Simple1DCIterator
-
- Simple1DConfiguration - Class in neureka.ndim.config.types.simple
-
- Simple1DConfiguration(int, int) - Constructor for class neureka.ndim.config.types.simple.Simple1DConfiguration
-
- Simple2DCIterator - Class in neureka.ndim.iterator.types.simple
-
- Simple2DCIterator(Simple2DConfiguration) - Constructor for class neureka.ndim.iterator.types.simple.Simple2DCIterator
-
- Simple2DConfiguration - Class in neureka.ndim.config.types.simple
-
- Simple2DConfiguration(int[], int[]) - Constructor for class neureka.ndim.config.types.simple.Simple2DConfiguration
-
- Simple3DCIterator - Class in neureka.ndim.iterator.types.simple
-
- Simple3DCIterator(Simple3DConfiguration) - Constructor for class neureka.ndim.iterator.types.simple.Simple3DCIterator
-
- Simple3DConfiguration - Class in neureka.ndim.config.types.simple
-
- Simple3DConfiguration(int[], int[]) - Constructor for class neureka.ndim.config.types.simple.Simple3DConfiguration
-
- SimpleCLImplementation - Class in neureka.backend.main.implementations
-
- SimpleCLImplementation(ImplementationFor<OpenCLDevice>, int, String, String) - Constructor for class neureka.backend.main.implementations.SimpleCLImplementation
-
- SimpleNDConfiguration - Class in neureka.ndim.config.types.simple
-
- SimpleNDConfiguration(int[], int[]) - Constructor for class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
- SimpleReshapeView - Class in neureka.ndim.config.types.views
-
- SimpleReshapeView(int[], NDConfiguration) - Constructor for class neureka.ndim.config.types.views.SimpleReshapeView
-
- sin() - Method in class neureka.math.Functions
-
- sin() - Method in interface neureka.Tensor
-
This method is a functionally identical to the following alternatives:
- singleFPConfig() - Method in class neureka.devices.opencl.OpenCLDevice
-
- SINUS - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- Sinus - Class in neureka.backend.main.operations.functions
-
- Sinus() - Constructor for class neureka.backend.main.operations.functions.Sinus
-
- size() - Method in class neureka.autograd.GraphNode
-
This is the number of AD-actions stored inside this node.
- size() - Method in class neureka.backend.api.BackendContext
-
- size() - Method in class neureka.common.utility.Cache
-
- size() - Method in interface neureka.ndim.config.NDConfiguration
-
- size() - Method in interface neureka.ndim.NDimensional
-
- size() - Method in interface neureka.Shape
-
- sizeOfShape(int[]) - Static method in class neureka.ndim.config.NDConfiguration.Utility
-
- Slice - Class in neureka.backend.main.operations.other
-
- Slice() - Constructor for class neureka.backend.main.operations.other.Slice
-
- slice(Object[], Tensor<ValType>) - Static method in class neureka.fluent.slicing.SmartSlicer
-
- slice() - Method in interface neureka.Nda
-
This method returns a
SliceBuilder
instance exposing a simple builder API
which enables the configuration of a slice of the current nd-array via method chaining.
- slice(int, int) - Method in interface neureka.Shape
-
- slice(int) - Method in interface neureka.Shape
-
- slice() - Method in interface neureka.Tensor
-
This method returns a
SliceBuilder
instance exposing a simple builder API
which enables the configuration of a slice of the current nd-array via method chaining.
- SliceBuilder<V> - Class in neureka.fluent.slicing
-
This class is the heart of the slice builder API, collecting range configurations by
exposing an API consisting of multiple interfaces which form a call state transition graph.
- SliceBuilder(Tensor<V>) - Constructor for class neureka.fluent.slicing.SliceBuilder
-
An instance of a slice builder does not perform the actual slicing itself!
Instead, it merely serves as a collector of slice configuration data.
- sliceCount() - Method in interface neureka.Nda
-
This method returns the number of slices which have been
created from this nd-array.
- sliceCount() - Method in interface neureka.Tensor
-
This method returns the number of slices which have been
created from this nd-array.
- Sliced0DConfiguration - Class in neureka.ndim.config.types.sliced
-
- Sliced0DConfiguration(int, int) - Constructor for class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
- Sliced1DCIterator - Class in neureka.ndim.iterator.types.sliced
-
- Sliced1DCIterator(Sliced1DConfiguration) - Constructor for class neureka.ndim.iterator.types.sliced.Sliced1DCIterator
-
- Sliced1DConfiguration - Class in neureka.ndim.config.types.sliced
-
- Sliced1DConfiguration(int, int, int, int, int) - Constructor for class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
- Sliced2DCIterator - Class in neureka.ndim.iterator.types.sliced
-
- Sliced2DCIterator(Sliced2DConfiguration) - Constructor for class neureka.ndim.iterator.types.sliced.Sliced2DCIterator
-
- Sliced2DConfiguration - Class in neureka.ndim.config.types.sliced
-
- Sliced2DConfiguration(int[], int[], int[], int[], int[]) - Constructor for class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
- Sliced3DCIterator - Class in neureka.ndim.iterator.types.sliced
-
- Sliced3DCIterator(Sliced3DConfiguration) - Constructor for class neureka.ndim.iterator.types.sliced.Sliced3DCIterator
-
- Sliced3DConfiguration - Class in neureka.ndim.config.types.sliced
-
- Sliced3DConfiguration(int[], int[], int[], int[], int[]) - Constructor for class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
- SlicedNDConfiguration - Class in neureka.ndim.config.types.sliced
-
- SlicedNDConfiguration(int[], int[], int[], int[], int[]) - Constructor for class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
- SlicedNDIterator - Class in neureka.ndim.iterator.types.sliced
-
- SlicedNDIterator(NDConfiguration) - Constructor for class neureka.ndim.iterator.types.sliced.SlicedNDIterator
-
- SmartSlicer - Class in neureka.fluent.slicing
-
This class is responsible for receiving any input and trying to interpret it so that a
slice can be formed.
- SmartSlicer() - Constructor for class neureka.fluent.slicing.SmartSlicer
-
- softmax() - Method in interface neureka.Tensor
-
- softmax(int) - Method in interface neureka.Tensor
-
- softmax(int...) - Method in interface neureka.Tensor
-
Calculates the softmax function along the specified axes.
- SOFTPLUS - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- Softplus - Class in neureka.backend.main.operations.functions
-
SoftPlus is a smooth approximation to the ReLU function and can be used
to constrain the output of a machine to always be positive.
- Softplus() - Constructor for class neureka.backend.main.operations.functions.Softplus
-
- softplus() - Method in class neureka.math.Functions
-
SoftPlus is a smooth approximation to the ReLU function and can be
used to constrain the output of a machine to always be positive.
- softplus() - Method in interface neureka.Tensor
-
This method is a functionally identical to the following alternatives:
- SOFTSIGN - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- softsign(double) - Static method in class neureka.backend.main.implementations.fun.ScalarSoftsign
-
- softsign(float) - Static method in class neureka.backend.main.implementations.fun.ScalarSoftsign
-
- Softsign - Class in neureka.backend.main.operations.functions
-
The softsign function, defined as
x / ( 1 + Math.abs( x ) )
,
is a computationally cheap 0 centered activation function
which rescales the inputs between -1 and 1, very much like the
Tanh
function.
- Softsign() - Constructor for class neureka.backend.main.operations.functions.Softsign
-
- softsign() - Method in class neureka.math.Functions
-
The softsign function, defined as
x / ( 1 + Math.abs( x ) )
,
is a computationally cheap 0 centered activation function
which rescales the inputs between -1 and 1, very much like the
Tanh
function.
- spaces(int) - Static method in class neureka.view.NdaAsString.Util
-
- spread() - Method in interface neureka.ndim.config.NDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in interface neureka.ndim.config.NDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
The spread is the access step size of a slice within the n-dimensional
data array of its parent tensor.
- spread() - Method in interface neureka.ndim.NDimensional
-
- SQRT - Static variable in interface neureka.backend.main.implementations.fun.api.ScalarFun
-
- Sqrt - Class in neureka.backend.main.operations.functions
-
- Sqrt() - Constructor for class neureka.backend.main.operations.functions.Sqrt
-
- sqrt() - Method in class neureka.math.Functions
-
- sqrt() - Method in interface neureka.Tensor
-
This method is a functionally identical to the following alternatives:
- StaticKernelSource - Interface in neureka.devices.opencl
-
- step(double) - Method in class neureka.fluent.building.NdaBuilder
-
- Step<V> - Interface in neureka.fluent.building.states
-
This interface defines the last step in the call transition graph of the fluent builder API when
building a
Tensor
instance populated based on the values within a defined range.
- step(double) - Method in interface neureka.fluent.building.states.Step
-
This is the last step in the call transition graph of the fluent builder API when
building a
Tensor
instance populated based on the values within a defined range.
- step(double) - Method in interface neureka.fluent.building.states.StepForTensor
-
This is the last step in the call transition graph of the fluent builder API when
building a
Tensor
instance populated based on the values within a defined range.
- step(int) - Method in class neureka.fluent.slicing.AxisSliceBuilder
-
- step(int) - Method in interface neureka.fluent.slicing.states.StepsOrAxisOrGet
-
This method allows one to specify a step size within the slice range
previously specified for the currently sliced axis.
- step(int) - Method in interface neureka.fluent.slicing.states.StepsOrAxisOrGetTensor
-
This method allows one to specify a step size within the slice range
previously specified for the currently sliced axis.
- StepForTensor<V> - Interface in neureka.fluent.building.states
-
- StepsOrAxisOrGet<V> - Interface in neureka.fluent.slicing.states
-
This interface extends the
AxisOrGet
interface which provides the option to either continue
slicing another axis or simply trigger the creation and return of a slice instance based on the
already provided slice configuration.
- StepsOrAxisOrGetTensor<V> - Interface in neureka.fluent.slicing.states
-
- Storage<V> - Interface in neureka.devices
-
This is an abstract interface which simply describes "a thing that stores tensors".
- store(Tensor<T>) - Method in class neureka.devices.AbstractDevice
-
Implementations of this method ought to store the data
of the tensor in whatever formant suites the underlying
implementation and or final type.
- store(Tensor<T>) - Method in class neureka.devices.file.CSVHandle
-
- store(Tensor<T>) - Method in class neureka.devices.file.FileDevice
-
Implementations of this method ought to store the data
of the tensor in whatever formant suites the underlying
implementation and or final type.
- store(Tensor<T>, String) - Method in class neureka.devices.file.FileDevice
-
Stores the given tensor in the file system with the given filename.
- store(Tensor<T>, String, Map<String, Object>) - Method in class neureka.devices.file.FileDevice
-
Stores the given tensor in the file system with the given filename.
- store(Tensor<T>) - Method in class neureka.devices.file.IDXHandle
-
- store(Tensor<T>) - Method in class neureka.devices.host.CPU
-
- store(Tensor<T>) - Method in interface neureka.devices.Storage
-
Implementations of this method ought to store the data
of the tensor in whatever formant suites the underlying
implementation and or final type.
- stream() - Method in interface neureka.Nda
-
- stream() - Method in interface neureka.Shape
-
- strides() - Method in interface neureka.ndim.config.NDConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in interface neureka.ndim.config.NDConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.permuted.Permuted1DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.permuted.Permuted2DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.permuted.Permuted3DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.permuted.PermutedNDConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.simple.Simple0DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.simple.Simple1DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.simple.Simple2DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.simple.Simple3DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.simple.SimpleNDConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.sliced.Sliced0DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.sliced.Sliced1DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.sliced.Sliced2DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.sliced.Sliced3DConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.sliced.SlicedNDConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.views.SimpleReshapeView
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
The array returned by this method is used to translate an array
of axis indices to a single ata array index.
- strides(int) - Method in class neureka.ndim.config.types.views.virtual.VirtualNDConfiguration
-
This method receives an axis index and returns the
translation value for the targeted axis.
- strides() - Method in interface neureka.ndim.NDimensional
-
- stringifier(OperationBuilder.Stringifier) - Method in class neureka.backend.api.template.operations.OperationBuilder
-
- stringify(String[]) - Method in interface neureka.backend.api.Operation
-
- stringify(String[]) - Method in class neureka.backend.api.template.operations.AbstractOperation
- stringify(String[]) - Method in interface neureka.backend.api.template.operations.OperationBuilder.Stringifier
-
- stringify(String[]) - Method in class neureka.backend.main.operations.linear.XConvLeft
-
- stringify(String[]) - Method in class neureka.backend.main.operations.linear.XConvRight
-
- stringify(String[]) - Method in class neureka.backend.main.operations.other.AssignLeft
-
- stringify(String[]) - Method in class neureka.backend.main.operations.other.Permute
-
- submit(int, CPU.IndexedWorkload) - Method in class neureka.devices.host.concurrent.WorkScheduler.Divider
-
- Subtraction - Class in neureka.backend.main.operations.operator
-
- Subtraction() - Constructor for class neureka.backend.main.operations.operator.Subtraction
-
- suitabilityIfValid(float) - Method in class neureka.backend.api.Call.Validator
-
- SuitabilityPredicate - Interface in neureka.backend.api.fun
-
- Sum - Class in neureka.backend.main.operations.other
-
- Sum() - Constructor for class neureka.backend.main.operations.other.Sum
-
- sum() - Method in class neureka.math.Functions
-
- sum() - Method in interface neureka.Tensor
-
Calculate the sum value of all values
within this tensor and returns it
in the form of a scalar tensor.
- sum(int) - Method in interface neureka.Tensor
-
Calculate the sum value of all values
within this tensor along the specified axis and returns it
in the form of a tensor.
- sum(int...) - Method in interface neureka.Tensor
-
Calculate the sum value of all values
within this tensor along the specified axes and returns it
in the form of a tensor.
- SumAlgorithm - Class in neureka.backend.main.algorithms
-
- SumAlgorithm() - Constructor for class neureka.backend.main.algorithms.SumAlgorithm
-
- Summation - Class in neureka.backend.main.operations.indexer
-
This type of operation belongs to the same species as the
Product
operation.
- Summation() - Constructor for class neureka.backend.main.operations.indexer.Summation
-
- supplyADActionFor(Function, ExecutionCall<? extends Device<?>>) - Method in interface neureka.backend.api.fun.ADActionSupplier
-
This method ought to return a new instance
if the
ADAction
class responsible for performing automatic differentiation
both for forward and backward mode differentiation.
- supplyADActionFor(Function, ExecutionCall<? extends Device<?>>) - Method in class neureka.backend.api.template.algorithms.FallbackAlgorithm
-
- supports(Class<T>) - Method in interface neureka.backend.api.Operation
-
- supports(Class<T>) - Method in class neureka.backend.api.template.operations.AbstractOperation
-
- supportsAlgorithm(Class<T>) - Method in interface neureka.backend.api.Operation
-
This method checks if this
Operation
contains an instance of the
Algorithm
implementation specified via its type class.
- supportsAlgorithm(Class<T>) - Method in class neureka.backend.api.template.operations.AbstractOperation
-
This method checks if this
Operation
contains an instance of the
Algorithm
implementation specified via its type class.